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Abstract. The theoretical understanding of support vector machines
is largely based on margin bounds for linear classifiers with unit-norm
weight vectors and unit-norm feature vectors. Unit-norm margin bounds
have been proved previously using fat-shattering arguments and Rademacher
complexity. Recently Langford and Shawe-Taylor proved a dimension-
independent unit-norm margin bound using a relatively simple PAC-
Bayesian argument. Unfortunately, the Langford-Shawe-Taylor bound is
stated in a variational form making direct comparison to fat-shattering
bounds difficult. This paper provides an explicit solution to the varia-
tional problem implicit in the Langford-Shawe-Taylor bound and shows
that the PAC-Bayesian margin bounds are significantly tighter. Because
a PAC-Bayesian bound is derived from a particular prior distribution
over hypotheses, a PAC-Bayesian margin bound also seems to provide
insight into the nature of the learning bias underlying the bound.

1 Introduction

Margin bounds play a central role in learning theory. Margin bounds for convex
combination weight vectors (unit �1 norm weight vectors) provide a theoretical
foundation for boosting algorithms [15, 9, 8]. Margin bounds for unit-norm weight
vectors provide a theoretical foundation for support vector machines [3, 17, 2].
This paper concerns the unit-norm margin bounds underlying support vector
machines. Earlier unit-norm margin bounds were proved using fat shattering
dimension. This paper, building on results by Langford and Shawe-Taylor [11],
gives a PAC-Bayesian unit-norm margin bound that is tighter than known unit-
norm margin bounds derived from fat shattering arguments.

Consider a fixed distribution D on pairs 〈x, y〉 with x ∈ Rd satisfying ||x|| = 1
and y ∈ {−1, 1}. We are interested in finding a weight vector w with ||w|| = 1
such that the sign of w ·x predicts y. For γ > 0 the error rate of w on distribution
D relative to safety margin γ, denoted �γ(w, D) is defined as follows.

�γ(w, D) = P〈x, y〉∼D
[(w · x)y ≤ γ]

Let S be a sample of m pairs drawn IID from the distribution D. The sample
S can be viewed as an empirical distribution on pairs. We are interested in



bounding �0(w, D) in terms of �γ(w, S) and the margin γ. Bartlett and Shawe-
Taylor use fat shattering arguments [2] to show that with probability at least
1 − δ over the choice of the sample S we have the following simultaneously for
all weight vectors w with ||w|| = 1 and margins γ > 0.

�0(w, D) ≤ �γ(w, S) + 27.18

√
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⎞
⎠ (1)

Note that the bound is independent of the dimension d (the number of features
and corresponding weights). Intuitively the quantity 1/γ2 acts like the complex-
ity of the weight vector. Bound (1) has been recently improved using Rademacher
complexity — Theorem 21 of [4] implies the following where k is mγ2.

�0(w, D) ≤ �γ(w, S) + 8
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Bound (2) has the nice scaling property that the bound remains meaningful in
a limit where k is held constant while m goes to infinity. Further improvements
on (2) are possible within the Rademacher complexity framework [1].

Initial attempts to use PAC-Bayesian arguments to derive unit-norm margin
bounds resulted in bounds that depended on d [6]. Here, building on the work
of Langford and Shawe-Taylor [11], we use a PAC-Bayesian argument to show
that with probability at least 1− δ over the choice of the sample S we have the
following simultaneously for all w with ||w|| = 1 and where ln+ (x) abbreviates
max(0, ln x).

�0(w, D) ≤ �γ(w, S) + 2
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Like (2), bound (3) is meaningful in a limit where k is held constant while m
goes to infinity. Bound (3) also interpolates the realizable and unrealizable case
— in the case where the training error �γ(w, S) is zero the bound is O((ln k)/k).
Note however, that even for �γ(w. S) = 1/2 we have that (3) is an improvement
on (1) and (2) for modest values of k.

Bound (3) is derived from a bound given by Langford and Shawe-Taylor [11]. The
Langford and Shawe-Taylor bound is tighter than (3) but is given in an implicit
form which makes explicit comparison with earlier bounds difficult. Langford
and Shawe-Taylor also use PAC-Bayesian analysis to define more refined notions
of margin leading to new learning algorithms. The contribution of this paper
is to solve the variational problems implicit in the Langford and Shawe-Taylor



bound and show clearly how the PAC-Bayesian bounds compare with earlier
bounds. PAC-Bayesian bounds seem competitive with the best known bounds
derivable by shattering and Rademacher methods.

The derivation of a margin bound from the PAC-Bayesian theorem presents the
bias of the learning algorithm in the familiar form of a prior distribution on
hypotheses. In particular, the derivation of (3) is based on an isotropic Gaussian
prior over the weight vectors. PAC-Bayesian arguments have also been used to
give what appears to be the tightest known bounds for Gaussian process classi-
fiers [16] and useful bounds for convex weight vector linear threshold classifiers
[9]. In these cases as well, PAC-Bayesian derivations present the bias of the
algorithm in the familiar form of a prior distribution.

2 The PAC-Bayesian Theorem

A first version of the PAC-Bayesian theorem appeared in [12]. The improved
statement of the theorem given here is due to Langford and the simplified proof
in the appendix is due to Seeger [10, 16]. Let D be a distribution on a set Z, let
P be a distribution on a set H , and let � be a “loss function” from H×Z to [0, 1].
For any distribution W on Z and h ∈ H let �(h, W ) be Ez∼W [�(h, z)]. Let S be
an IID sample of m elements of Z drawn according to the distribution D. We are
interested in using the sample S to select h ∈ H so as to minimize the loss �(h, D).
We will treat the sample as a distribution in the standard way so that �(h, S) is
the (training) loss of h on the sample S and �(h, D) is the (generalization) loss
of h on D. A common case is where the set Z is of the form X×{0, 1}, H is a set
of functions from X to {0, 1}, and �(h, 〈x, y〉) is 1 if h(x) �= y and 0 otherwise. In
this case �(h, S) is the training error rate of rule h on the sample S and �(h, D)
is P〈x, y〉∼D

[h(x) �= y]. We will be interested in Gibbs classifiers, i.e., classifiers
which select h stochastically [5]. For any distribution Q on H and distribution
W on Z let �(Q, W ) denote Eh∼Q,z∼W [�(h, z)]. �(Q, S) is the training loss of the
Gibbs rule defined by Q and �(Q, D) is the generalization loss of this rule. For
two distributions Q and P on the same set H the Kullback-Leibler divergence
KL(Q||P ) is defined to be Eh∼Q [ln(dQ(h)/dP (h))]. For p, q ∈ [0, 1] let KL(p||q)
denote the Kullback-Leibler divergence from a Bernoulli variable with bias p to
a Bernoulli variable with bias q. We have KL(p||q) = p ln(p/q) + (1 − p) ln((1 −
p)/(1 − q)). Let ∀δS Φ(S, δ) mean that with probability at least 1 − δ over the
choice of S we have that Φ(S, δ) holds. The two-sided PAC-Bayesian theorem
is the following where P is a fixed “prior” distribution on H and Q ranges over
arbitrary “posterior” distributions on H .

∀δS ∀Q KL(�(Q, S)||�(Q, D)) ≤ KL(Q||P ) + ln 2m
δ

m − 1
(4)



Note that �(Q, D) is the error rate of a Gibbs classifier that first selects a rule
stochastically according to the distribution Q and then uses the prediction of
that rule. Intuitively, the theorem states that if KL(Q||P ) is small then �(Q, D)
is near �(Q, S). Formula (4) bounds the difference between the empirical loss
�(Q, S) of the Gibbs classifier and its true (generalization) loss �(Q, D).

A one-sided version can be stated as follows where 2/δ in the two-sided version
becomes 1/δ in the one-sided version.

∀δS ∀Q �(Q, D) ≤ sup
{

ε : KL(�(Q, S)||ε) ≤ KL(Q||P ) + ln m
δ

m − 1

}
(5)

For q > p we have that KL(p||q) ≥ (q − p)2/(2q). This inequality implies that
if KL(p||q) ≤ x then q ≤ p +

√
2px + 2x. So (5) implies the following somewhat

weaker but perhaps clearer statement.

�(Q,D) ≤ �(Q,S) +

√
2�(Q, S)

(
KL(Q||P ) + ln m

δ

)
m − 1

+
2
(
KL(Q||P ) + ln m

δ

)
m − 1

(6)

Note if the empirical loss �(Q, S) is small compared to KL(Q||P )/m then the last
term dominates (the realizable case). If �(Q, S) is large compared to KL(Q||P )/m
then the first term dominates. Because the arithmetic mean bounds the geomet-
ric mean, we have that in general the bound is O(�(Q, S)+KL(Q||P )/m). Proofs
of these theorems are given in an appendix.

3 Gibbs Linear Threshold Classifiers

In this section we use the PAC-Bayesian theorem to prove a margin bound for a
Gibbs classifier which stochastically selects a linear threshold function. The next
section uses similar methods to prove a margin bound for a single (deterministic)
linear threshold classifier. In both this section and the next we take Z to be the
set of pairs 〈x, y〉 with x ∈ Rd satisfying ||x|| = 1 and y ∈ {−1, 1}. Both these
sections take H to be weight vectors in Rd and take the prior P on H to be a
unit-variance isotropic (the same in all directions) multivariate Gaussian on Rd.
For each γ ≥ 0 we define a loss function �γ as follows.

�γ(w, 〈x, y〉) =
{

1 if y(w · x) ≤ γ
0 otherwise

For w ∈ Rd with ||w|| = 1 and μ > 0 define the “posterior” Q(w, μ) by the
following density function q where p is the density function of the “prior” P and



Z is a normalizing constant.

q(w′) =
1
Z

{
p(w′) if w′ · w ≥ μ
0 otherwise

Note that w′ is drawn from a unit-variance multivariate Gaussian and w is a
fixed vector with ||w|| = 1. Since Q(w, μ) is just the prior renormalized on a
subset of the space we have the following where Φ (μ) is the probability that a
unit-variance Gaussian real-value random variable exceeds μ.

KL(Q(w, μ)||P ) = ln
1
Z

= ln
1

P (w′ · w ≥ μ)
= ln

1
Φ (μ)

Now for γ > 0, any hypothesis distribution Q, and any data distribution W ,
define �γ(Q, W ) as follows.

�γ(Q, W ) = E
w∼Q,〈x, y〉∼W

[�γ(w, 〈x, y〉)]

We will often write �γ(w, W ) where w ∈ Rd as a notation for �γ(Q, W ) where
Q places all of its weight on w. These quantities are error rates relative to a
“safety margin” of γ. The fundamental idea behind the PAC-Bayesian approach
to margin bounds is that a small error rate relative to a large safety margin
ensures the existence of a posterior distribution (a Gibbs classifier) with a small
training error and a small KL-divergence from the prior. We first consider the
training error. Langford and Shawe-Taylor prove the following.

Lemma 1 (Langford&Shawe-Taylor). For w ∈ Rd with ||w|| = 1, and for
μ ≥ 0, we have the following for all γ ≥ 0.

�0(Q(w, μ), S) ≤ �γ(w, S) + Φ (γμ)

Proof. For x ∈ Rd with ||x|| = 1 we let x|| be (w ·x)w (x|| is the component of x
parallel to w), and let x⊥ be x− x|| (x⊥ is the component of x perpendicular to
w). Let 〈x, y〉 be a tuple in S. We say that 〈x, y〉 is γ-safe (for w) if y(w ·x) ≥ γ.
Note that the Gaussian prior on weight vectors has the property that, for any two
orthogonal directions, the components of a random vector in those two directions
are independent and normally distributed. Fix a γ-safe point 〈x, y〉 and consider
the orthogonal components w′ ·x⊥ and w′ ·x|| as we select random weight vectors
w′. If w′ ·w ≥ μ, and 〈x, y〉 is γ-safe for w then y(w′ ·x||) ≥ γμ. More specifically
we have the following.

Pw′∼Q(w,μ) [y(w′ · x) ≤ 0] = Pw′∼Q(w,μ)

[−y(w′ · x⊥) ≥ y(w′ · x||)
]

= Pw′∼Q(w,μ) [−y(w′ · x⊥) ≥ y(x · w)(w′ · w))]
≤ Pw′∼Q(w,μ) [−y(w′ · x⊥) ≥ γμ]

= Φ

(
γμ

||x⊥||
)

≤ Φ (γμ)



This yields the following.

�0(Q(w, μ), S) = E〈x, y〉∼S

[
Pw′∼Q(w,μ) [y(w′ · x) ≤ 0]

]
≤ �γ(w, S) + E〈x, y〉∼S

[
Pw′∼Q(w,μ) [y(w′ · x) ≤ 0] | y(x · w) ≥ γ

]
≤ �γ(w, S) + Φ (γμ)


�

Formula (5) (for the loss function �0) and Lemma 1 together yield the following.

Theorem 1 (Langford&Shawe-Taylor). With probability at least 1− δ over
the choice of the sample we have that the following holds simultaneously for all
w ∈ Rd with ||w|| = 1, μ ≥ 0 and γ ≥ 0.

�0(Q(w, μ), D) ≤ sup

{
ε : KL (�γ(w, S) + Φ (γμ) || ε) ≤

ln 1
Φ(μ) + ln m

δ

m − 1

}

The main contribution of this paper is to give a particular value for μ and then
“solve” for the upper bound on �0(Q(w, μ)) implicit in Theorem 1. In particular
we define μ(γ) as follows.

μ(γ) =

√
2 ln (mγ2)

γ

For this choice of μ we have the following.

Theorem 2. With probability at least 1 − δ over the choice of the sample S we
have that the following holds simultaneously for all w ∈ Rd with ||w|| = 1 and
γ > 0.

�0(Q(w, μ(γ)), D) ≤ sup

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

ε :

KL
(
�γ(w, S) + 1

mγ2 || ε
)

≤
ln+(mγ2)

γ2 + 3
2 lnm+ln 1

δ +3

m−1

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

Theorem 2 follows from the following of two lemmas.

Lemma 2. For γ > 0 we have the following.

ln
1

Φ (μ(γ))
≤ ln+

(
mγ2

)
γ2

+
1
2

ln m + 3



Proof. First, if μ(γ) ≤ 3/2 we have the following.

ln
1

Φ (μ(γ))
≤ ln

1
Φ (3/2)

≤ 3 (7)

In this case ln
(
mγ2

)
might be negative, but the lemma still follows. Now suppose

μ(γ) ≥ 3/2. For μ ≥ 0 we have the following well known lower bound on Φ (μ)
(see [14]).

Φ (μ) ≥
(

1 − 1
μ2

)
1√
2π

1
μ

exp
(
−μ2

2

)
(8)

For μ(γ) ≥ 3/2 formula 8 yields the following.

Φ (μ(γ)) ≥ 5
9

1√
2π

1
μ(γ)

exp
(−μ2(γ)/2

)
This yields the following.

ln
1

Φ (μ(γ))
≤ 2 + lnμ(γ) +

ln(mγ2)
γ2

(9)

We have that μ(γ) goes to zero as γ goes to infinity and goes to negative infinity
as γ goes to zero. Furthermore, a simple calculation shows that the derivative is
zero at only a single point given by γ =

√
e/m and at this point μ(γ) is positive.

These facts imply that this point is a maximum of μ(γ) and we get the following
which implies the lemma.

μ(γ) ≤
√

2m

e
(10)


�

Lemma 3. For γ > 0 we have the following.

Φ (γμ(γ)) ≤ 1
mγ2

Proof. For γ ≤ 1/
√

m we have 1/(mγ2) ≥ 1 and the lemma follows from Φ (x) ≤
1. For γ ≥ 1/

√
m we have μ(γ) ≥ 0 and the lemma follows from the fact that

for z ≥ 0 we have Φ (z) ≤ exp(−z2/2). 
�

Theorem 2 now follows from Theorem 1 and Lemmas 2 and 3. Using KL(p||q) ≤
1
2q(q − p)2 for p ≤ q we get the following corollary of Theorem 2.



Corollary 1. With probability at least 1− δ over the choice of the sample S we
have that the following holds simultaneously for all w ∈ Rd with ||w|| = 1 and
γ > 0.

�0(Q(w, μ(γ)), D) ≤ �̂ +
√

2�̂Δ + 2Δ

where

�̂ = �γ(w, S) +
1

mγ2

Δ =
ln+(mγ2)

γ2 + 3
2 ln m + ln 1

δ + 3

m − 1

The body of Corollary 1 can be rewritten as follows.

�0(Q(w, μ(γ)), D) ≤ �γ(w, S) +

√
2
(
�γ(w, S) + 1

k

)
ln+ (k)

k
+

1 + 2 ln+ (k)
k

+O

⎛
⎝
√

ln m + ln 1
δ

m

⎞
⎠ (11)

Note that (11) is vacuously true for k ≤ 1. For k ≥ 1 the constants in the big O
expression are modest and independent of k (i.e., independent of γ). For large
sample size the big O term vanishes and either the error is very near zero or the
bound is dominated by the terms involving k. This bound has a nice limiting
behavior in a “thermodynamic limit” where �γ(w, S) and k are held constant
while m → ∞. This thermodynamic limit corresponds to a realistic regime where
m is large but �γ(w, S) and 1/k are still significantly greater than zero. For the
realizable case, i.e., when �γ(w, S) = 0, we get the following.

�0(Q(w, μ(γ)), D) ≤
1 +

√
2 ln+ (k) + 2 ln+ (k)

k
+ O

⎛
⎝
√

ln m + ln 1
δ

m

⎞
⎠ (12)

4 Deterministic Linear Classifiers

Theorem 2 gives a margin bound for the loss of a Gibbs classifier — a classifier
that stochastically selects the classification rule at classification time. There are
two ways of converting Theorem 2 into a margin guarantee on a deterministic
linear classification rule. First we observe that the deterministic classification
rule defined by the weight vector w corresponds to the majority vote over the
distribution Q(w, μ). More formally we have that Pw′∼Q(w,μ) [w′ · x ≥ 0] ≥ 1/2
if and only if x · w ≥ 0. For any Gibbs classifier, the error rate of the majority
vote classifier can be at most twice the error rate of the Gibbs classifier. This



is because each error of the majority vote classifier requires that at least half
(under the voting measure) of the individual classifiers are making an error and
so the error rate of the Gibbs classifier must be at least half the error rate of
the majority vote classifier. This general factor of two bound on the error rate
of the majority classifier together with (11) yields the following.

�0(w, D) ≤ 2�γ(w, S) + 2

√
2
(
�γ(w, S) + 1

k

)
ln+ (k)

k
+

2
(
1 + 2 ln+ (k)

)
k

+O

⎛
⎝
√

ln m + ln 1
δ

m

⎞
⎠ (13)

Again it is interesting to consider the thermodynamic limit where �γ(w, S) and
k are held constant as m → ∞. Note that (3) is tighter than (13) in the regime
where 1/k is small compared to �γ(w, S). We now prove (3). We start with the
following generalization of Lemma 1.

Lemma 4 (Langford&Shawe-Taylor). Let W be any distribution on pairs
〈x, y〉 with x ∈ Rd satisfying ||x|| = 1 and y ∈ {−1, 1}. Let w be any vector in
Rd satisfying ||w|| = 1. For μ ≥ 0 and γ ≥ 0 and any real value β we have the
following.

P〈x, y〉∼W,w′∼Q(w,μ)

[
y(w′ · x) ≤ β

]
≤ P〈x, y〉∼W

[y(w · x) ≤ β + γ] + Φ (γμ) (14)

P〈x, y〉∼W,w′∼Q(w,μ)

[
y(w′ · x) > β

]
≤ P〈x, y〉∼W

[y(w · x) > β − γ] + Φ (γμ) (15)

Formula (14) is a generalization of Lemma 1 and the proof of (14) is a straight-
forward generalization of the proof of Lemma 1. The proof of (15) is similar.
Lemma 4 yields the following corollary.

Corollary 2 (Langford&Shawe-Taylor).

�γ/2(Q(w, μ), S) ≤ �γ(w, S) + Φ (γμ/2) (16)
�0(w, D) ≤ �γ/2(Q(w, μ), D) + Φ (γμ/2) (17)

Proof. Formula (16) is an instance of (14) with β = γ/2 and γ replaced by γ/2.
To prove (17) we construct the following instance of (15) again with β = γ/2
and γ replaced by γ/2.

1 − �γ/2(Q(w, μ), D) ≤ 1 − �0(w, D) + Φ (γμ/2)


�



To get a bound on �0(w, D) it now suffices to bound �γ/2(Q(w, μ), D) in terms of
�γ/2(Q(w, μ), S). An application of (5) to the loss function �γ yields the following.

∀γ∀δS ∀Q �γ(Q, D) ≤ sup
{

ε : KL (�γ(Q, S)||ε) ≤ KL(Q||P ) + ln m
δ

m − 1

}
(18)

We now consider discrete values of γ satisfying the statements that k = mγ2 =
i/m for i ∈ {1, 2, . . . , m2}. By a union bound over the m2 different possible
values of γ we get that with probability at least 1−δ over the choice of the sample
the following holds for all Q and for all γ satisfying k ∈ {1/m, 2/m, . . . , m2/m}.

�γ/2(Q, D) ≤ sup

{
ε : KL

(
�γ/2(Q, S)||ε) ≤ KL(Q||P ) + ln m3

δ

m − 1

}
(19)

Formulas (16), (17), and (19) together yield the following variant of a theorem
in [11].

Theorem 3 (Langford and Shawe-Taylor). With probability at least 1 − δ
over the choice of the sample we have the following simultaneously for all μ ≥ 0
and γ ∈ {1/m, 2/m . . . , m/m}.

�0(w, D) ≤ sup

⎧⎨
⎩ε : KL (�γ(w, S) + Φ (γμ/2) ||ε − Φ (γμ/2)) ≤

ln 1
Φ(μ) + ln m3

δ

m − 1

⎫⎬
⎭

Again, the main contribution of this paper is to construct more explicit forms of
the bounds implicit in Theorems 1 and 3. Using μ(γ/2) in Theorem 3 together
with Lemmas 2 and 3 yields the following.

�0(w, D) ≤ sup

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

ε :

KL
(
�γ(w, S) + 4

mγ2 ||ε − 4
mγ2

)

≤
4 ln+(mγ2/4)

γ2 + 7
2 ln m+ln 1

δ +3

m−1

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(20)

By the arguments deriving (11) from Theorem 2 we then have the following for
the allowed discrete values of k.

�0(w, D) ≤ �γ(w, S) + 2

√
2
(
�γ(w, S) + 4

k

)
ln+

(
k
4

)
k

+
8
(
1 + ln+

(
k
4

))
k

+O

⎛
⎝
√

ln m + ln 1
δ

m

⎞
⎠ (21)

To derive (3) for arbitrary γ we first note that (3) is vacuously true for k ≤ 8.
For k ≥ 8 we have γ ≥ 4/

√
m. Let α be the largest value with α ≤ γ such that



mα2 has the form i/m for i ∈ {1, . . . , m2}. Let k′ be mα. Note that we have
k′ ≥ 8. We now get that (21) holds for α and k′ replacing γ and k respectively.
Note that �α(w, S) ≤ �γ(w, S) and k′ ≥ k − 1/m. This give the following for
arbitrary γ satisfying k ≥ 8.

�0(w, D) ≤ �γ(w, S) + 2

√√√√2
(
�γ(w, S) + 4

k−1/m

)
ln+

(
k
4

)
k − 1/m

+
8
(
1 + ln+

(
k
4

))
k − 1/m

+O

⎛
⎝
√

ln m + ln 1
δ

m

⎞
⎠ (22)

The difference between k and k − 1/m can then be absorbed into the final term
and we get (3).
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5 Appendix: Proofs of PAC-Bayesian Theorems

McAllester’s original form of the theorem used a square root rather than an
inverse KL divergence. The inverse KL divergence form is due to John Langford.
The simple proof based on Jensen’s inequality is due to Matthias Seeger. We
prove the one-sided version (5). A lower bound version of (5) follows by applying
(5) to the loss function 1 − � and the two-sided version (4) follows by a union
bound from the upper and lower bound versions. To prove (5) we first prove the
following lemma.

Lemma 5. Let X be a real valued random variable satisfying

P (X ≤ x) ≤ e−mf(x)

where f(x) is non-negative. For any such X we have the following.

E
[
e(m−1)f(X)

]
≤ m

Proof. If P (X ≤ x) ≤ e−mf(x) then P (e(m−1)f(X) ≥ ν) ≤ min(1, ν−m/(m−1)).
We can then use the general fact that for W non-negative we have E [W ] =∫∞
0 P (W ≥ ν)dν. This gives the following.

E
[
e(m−1)f(X)

]
≤ 1 +

∫ ∞

1

ν−m/(m−1)dν

= 1 − (m − 1)
[
ν−1/(m−1)

]∞
1

= m


�



Now let KL+(p||q) be zero if p ≥ q and KL(p||q) if p ≤ q. Hoeffding [7] proved
essentially the following.1

Lemma 6 (Hoeffding). If X1, . . ., Xm are IID random variables restricted to
the interval [0, 1], and X̂ is the empirical average (X1 + · · · + Xm)/m, then for
ε ∈ [0, 1] we have the following.

P (X̂ ≤ ε) ≤ e−mKL+(ε||E[Xi])

Lemma 7.
∀δS Eh∼P

[
e(m−1)KL+(�(h,S)||�(h, D))

]
≤ m

δ

Proof. Lemma 5 and Lemma 6 together imply the following for any fixed h ∈ H .

ES∼Dm

[
e(m−1)KL+(�(h,S)||�(h,D))

]
≤ m

This implies the following.

ES∼Dm

[
Eh∼H

[
e(m−1)KL+(�(h,S)||�(h,D))

]]
≤ m

The lemma now follows from Markov’s inequality. 
�

We now prove the following shift of measure lemma.

Lemma 8.
Ex∼Q [f(x)] ≤ KL(Q||P ) + ln Ex∼P

[
ef(x)

]

Proof.

Ex∼Q [f(x)] = Ex∼Q

[
ln ef(x)

]
1 It is interesting to note that Lemma 6 generalizes to an arbitrary real-valued random

variable X. Let Pβ be the Gibbs distribution on X at inverse temperature β, let
Eβ [f(X)] be the expectation of f(X) under Pβ , and let Zβ be the partition function
at inverse temperature β.

Pβ(X = x) =
1

Zβ
e−βxP (X = x)

Eβ [f(X)] =
1

Zβ
E
[
f(X)e−βX

]
Zβ = E

[
e−βX

]
Let DP (x) be P (X ≤ x) if x ≤ E [X] and P (X ≥ x) if x ≥ E [X]. In general we
have DP (x) ≤ exp(−KL(Pβ ||P )) where β satisfies Eβ [X] = x. This is, in general,
the tightest bound provable by Chernoff’s exponential moment method [13].



= Ex∼Q

[
ln

dP (x)
dQ(x)

ef(x) + ln
dQ(x)
dP (x)

]

= KL(Q||P ) + Ex∼Q

[
ln

dP (x)
dQ(x)

ef(x)

]

≤ KL(Q||P ) + ln Ex∼Q

[
dP (x)
dQ(x)

ef(x)

]

= KL(Q||P ) + ln Ex∼P

[
ef(x)

]

�

Formula (5) can now be proved by assuming the body of Lemma 8 (which holds
with probability at least 1 − δ) and then observing the following where the last
step follows from Jensen’s inequality and strong convexity properties of KL-
divergence.

Eh∼Q

[
(m − 1)KL+(�(h, S)||�(h, D))

] ≤ KL(Q||P ) + ln Eh∼P

[
e(m−1)KL+(�(h,S)||�(h,D))

]

≤ KL(Q||P ) + ln
m

δ

(m − 1)KL+(�(Q, S)||�(Q, D)) ≤ KL(Q||P ) + ln
m

δ


