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Abstract

Classical statistical learning theory studies the generalisation performance of machine
learning algorithms rather indirectly. One of the main detours is that algorithms are studied
in terms of the hypothesis class that they draw their hypotheses from. In this paper,
motivated by the luckiness framework of Shawe-Taylor et al. (1998), we study learning
algorithms more directly and in a way that allows us to exploit the serendipity of the
training sample. The main difference to previous approaches lies in the complexity measure;
rather than covering all hypotheses in a given hypothesis space it is only necessary to cover
the functions which could have been learned using the fixed learning algorithm. We show
how the resulting framework relates to the VC, luckiness and compression frameworks.
Finally, we present an application of this framework to the maximum margin algorithm
for linear classifiers which results in a bound that exploits the margin, the sparsity of the
resultant weight vector, and the degree of clustering of the training data in feature space.

1. Introduction

Statistical learning theory has been mainly concerned with the study of uniform bounds
on the expected error of hypotheses from a given hypothesis space (Vapnik, 1998; Anthony
and Bartlett, 1999). Such bounds have the appealing feature that they provide performance
guarantees for classifiers found by any learning algorithm. However, it has been observed
that these bounds tend to be overly pessimistic. One explanation is that only in the case
of learning algorithms which minimise the training error it has been proven that uniformity
of the bounds is equivalent to studying the learning algorithm’s generalisation performance
directly, and this equivalence only holds in an asymptotic sense. Thus it is not surprising
that such analysis tools, which analyse algorithms mainly in terms of the class of functions
from which they draw their hypotheses, are somewhat loose.

In this paper we present a theoretical framework for directly studying the generalisation
error of a learning algorithm rather than taking the detour via the uniform convergence
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of training errors to expected errors in a given hypothesis space. In addition, our new
model of learning allows the exploitation of the situation that we serendipitously observe a
training sample which is easy to learn by a given learning algorithm. Thus our framework
is consanguineous to the luckiness framework of Shawe-Taylor et al. (1998). In this paper,
the luckiness is a function of a given learning algorithm and a given training sample and
characterises the diversity of the algorithm’s solutions. This notion of luckiness enables
the study of given learning algorithms from many different perspectives. For example, the
maximum margin algorithm (Vapnik, 1998) can be studied via the number of dimensions in
feature space, the margin of the classifier learned or the sparsity of the resulting classifier.
Our main results are two generalisation error bounds for learning algorithms: one for when
the training error is zero and one agnostic bound (Section 5). We shall demonstrate the
utility of our new framework by studying its relation to the VC framework, the original
luckiness framework, the compression framework of Littlestone and Warmuth (1986), and
algorithmic stability (Section 6). Finally, we present an application of the new framework
to the maximum margin algorithm for linear classifiers (Section 7).

1.1 Notation and Background

Let X and Y be sets and let Z = X × Y . We denote vectors using bold face, e.g. x =
(x1, . . . , xm) and the length of this vector by |x|, i.e. |x| = m. The shorthand notation
x ∈ x means ∃i ∈ {1, . . . , |x|} : x = xi. For natural numbers i and j, i ≤ j, [i : j] :=
(i, i + 1, . . . , j). Given a vector z and an index vector i = (i1, . . . , ik) ∈ {1, . . . , |z|}k, define
z � := (zi1 , . . . , zik). The symbols PX, EX [f (X)] and I denote a probability measure over X,
the expectation of f (·) over the random draw of its argument x and the indicator function,
respectively. For a vector valued function f , we define varX (f (X)) := EX[‖f (X) − µ‖2]
where µ = EX [f (X)]. The notation PXm denotes the product measure PX1 · · ·PXm. The
symbols R and N denote the real and natural numbers, respectively. The shorthand notation
Z(∞) := ∪∞

m=1Zm denotes the union of all m–fold Cartesian products of the set Z. If
f : X → Y is a function, F ⊆ YX and x ∈ Xm then f| � := (f (x1) , . . . , f (xm)) and
F| � :=

{
f| � | f ∈ F

}
denotes the evaluation of f at x1, . . . , xm and its extension to the set

F respectively. Moreover, if H ⊆ YX and l : Y × Y → R
+ then

Ll (H) := {(x, y) 7→ l (h (x) , y) | h ∈ H} .

Since we often consider permutations we introduce the following additional notation: For
any m ∈ N we define Im ⊂ {1, . . . ,m}m as the set of all permutations of the numbers
1, . . . ,m,

Im := {(i1, . . . , im) ∈ {1, . . . ,m}m | ∀j 6= k : ij 6= ik } .

Note that |Im| = m!. Given a 2m–vector i ∈ I2m and a m-vector s ∈ {0, 1}m we define π � :
{1, . . . , 2m} → {1, . . . , 2m} and the swapping permutation σ � : {1, . . . , 2m} → {1, . . . , 2m}
by

∀j ∈ {1, . . . , 2m} : π � (j) := ij , σ � (j) := j + m · (sjIj≤m − sj−mIj>m) ,

that is σ � swaps i and i + m if and only if si = 1. Given a sample z ∈ Z2m we denote the
action of π � and σ � on the indices of z by Π � (z) and Σ � (z), i.e. Π� (z) :=

(
zπ � (1), . . . , zπ � (2m)

)

and Σ � (z) :=
(
zσ � (1), . . . , zσ � (2m)

)
.
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Given a set B ⊆ A and a metric ρ : A×A → R
+ the covering number N (ε,B, ρ) is defined

as the size of the smallest subset C ⊆ A such that for all b ∈ B there exists a c ∈ C such
that ρ (b, c) < ε. Such a set C is called a cover of the set B at the scale ε. If A = R

n then
we define the `n

1–metric ρn
1 by

∀x,y ∈ R
n : ρn

1 (x,y) :=
1

n

n∑

i=1

|xi − yi| .

If x ∈ X n and f and g are functions from X to R then ρ �
1 : R

X × R
X → R

+ is defined by

ρ �
1 (f, g) := ρn

1

(
f| � , g| �

)
.

Finally, the `n
1–norm ‖·‖1 is defined by ‖x‖1 :=

∑n
i=1 |xi|. Note that ‖x − y‖1 = n·ρn

1 (x,y).

2. The Learning Model

Suppose we are given a training sample z = (x,y) ∈ (X × Y)m of size m ∈ N drawn iid
from some unknown distribution PXY = PZ. Suppose furthermore we are given a learning
algorithm A : Z(∞) → YX that maps a given training sample z ∈ Z(∞) to a function from
X to Y, often called a hypothesis. Then we would like to investigate the generalisation
error of the algorithm.

Definition 1 (Generalisation, prediction and training error) Given a loss l : Y ×
Y → R

+ and a hypothesis h ∈ YX the prediction error Rl [h] of h is defined by

Rl [h] := EXY [l (h (X) ,Y)] .

Given a training sample z ∈ Z(∞), the training error R̂l [h,z] is defined as the empirical
counterpart of the prediction error, i.e.

R̂l [h,z] :=
1

|z|
∑

(xi,yi)∈ �

l (h (xi) , yi) .

For any learning algorithm A : Z(∞) → YX , the generalisation error Gl [A,z] of A is defined
as the prediction error of A (z),

Gl [A,z] := Rl [A (z)] .

Note that Gl [Az] can never be smaller than the quantity infh∈YX Rl [h] which is also known
as the Bayes error.

Definition 2 (Generalisation error bound) A function ε : Z(∞)×(0, 1] → R
+ is called

a generalisation error bound1 for A if and only if

∀PZ : ∀δ ∈ (0, 1] : PZm (Gl (A,Z) ≤ ε (Z, δ)) ≥ 1 − δ .

1. In classical statistics, such a function is closely related to a confidence interval for the estimator
�

. In
fact, the interval [0, ε ( � , δ)] is a confidence interval for the difference between the prediction error of

�
( � ) and the smallest prediction error possible at level at least 1 − δ.
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It is worth noticing that any probabilistic bound on Rl [A (z)] can readily be transformed
into a generalisation error bound because the Bayes error does not depend on the training
sample z. Hence, our ultimate interest is in the predictive performance Rl [A (z)] of A (z) ∈
YX . The classical approach taken by many researchers (see, e.g. Vapnik, 1982, 1995;
Blumer et al., 1989; Shawe-Taylor et al., 1998) is to derive uniform bounds over some a-
priori restricted subset H ⊆ YX of hypotheses often called hypothesis space, i.e. proving an
upper bound on the prediction error which holds uniformly for all hypotheses h ∈ H (or
all consistent hypotheses) we automatically obtain a bound for A (z) because A (z) ∈ H by
definition. Clearly, this is much too strong a requirement and leads to bounds which are
independent of the algorithm used.

3. A General Recipe for Generalisation Error Bounds

Before presenting our new framework let us consider the general steps typically used to
obtain bounds on the generalisation error. The five steps classically used in statistical
learning theory are as follows:

1. First, we relate the prediction error Rl [h] of a given hypothesis h ∈ YX to some
empirical quantity such as the training error R̂l [h,z]. The essential requirement on
the empirical quantity is that one can show an exponentially fast convergence towards
Rl [h] over the random draw of the training sample z ∈ Zm for a fixed hypothesis h.
More formally, we require that2

∀h ∈ YX : PZm

(∣∣∣Rl [h] − R̂l [h,Z]
∣∣∣ > ε

)
< exp

(
−cεβm

)
,

for some constant c ∈ R
+ and β ∈ [1, 2]. If the loss function l is bounded then an

application of Hoeffding’s inequality (Hoeffding, 1963) establishes such a convergence
(see Feller, 1966; Devroye and Lugosi, 2001, for further results).

2. Exploiting the exponential convergence of the empirical quantity towards the predic-
tion error, it is possible to bound the probability of training samples z ∈ Zm such that
the prediction error deviates from the empirical quantity by more than ε, by twice the
probability that the empirical quantity deviates by more than ε/2 when evaluated on
two training samples3 z, z̃ ∈ Zm drawn iid. This step is known as symmetrisation by
a ghost sample and can either be shown to be valid uniformly over some hypothesis
space H ⊆ YX (see Lemma 20 and 21) or for the hypothesis learned from the first
training sample (see Lemma 22 and 23). In fact, a closer look at the proof shows that
in the uniform case we are effectively studying the algorithm

Aworst (z) := argmax
{h∈H |

�
Rl[h, � ]=0}

Rl [h] , Aworst (z) := argmax
h∈H

∣∣∣Rl [h] − R̂l [h,z]
∣∣∣ ,

2. Depending on the type of result we are looking for, it is also possible to consider a multiplicative form,
that is,

∀h ∈ YX : PZm

�
Rl [h]�

Rl [h,Z]
> ε � < exp � −cε

β
m � ,

for some c ∈ � + and β ∈ [1, 2] (see, e.g. Anthony and Shawe-Taylor (1993)).
3. Such samples are referred to as double samples and the second sample is often called a ghost sample.
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depending on whether we consider consistent or agnostic learning.

3. In order to bound the probability of the above-mentioned event over the random draw
of double samples z ∈ Z2m we resort to a technique known as symmetrisation by
permutation (Kahane, 1968). This technique exploits the assumption that the double
sample is drawn iid since PZ2m (Υ (Z)) = PZ2m (Υ (Π � (Z))) for any permutation π � .
Thus,

PZ2m (Υ (Z)) = EI

[
PZ2m|I=

� (Υ (Π � (Z)))
]

= EZ2m

[
PI|Z2m= � (Υ (ΠI (z)))

]
(1)

for any measure PI over permutations. The advantage of this conditioning step on
permutations is that we can fix the double sample z ∈ Z2m and only need to determine
the probability of permutations such that Υ (Π � (z)) holds. If PI is uniform then
this reduces to simple counting. This technique also works if we only assume the
training (and ghost) sample to be exchangeable which is slightly weaker than the iid
assumption.

4. For any fixed double sample z ∈ Z2m we consider a cover (w.r.t. the defined empirical
quantity) of all hypotheses (uniform case) or all hypotheses that can be generated by
permuting the double sample and training on the first m training examples (algorith-
mic case). Given such a cover, we can now apply the union bound which naturally
brings covering numbers of the hypothesis space (uniform case) or covering numbers
of the “reachable” hypotheses (algorithmic case) into the generalisation error bound.

5. Finally, for a fixed hypothesis h in the cover we need to bound the probability that the
empirical quantity measured on the training and ghost sample deviates by more than
ε/2 over the random draw of permutations. It turns out that this bounding step can
easily be reduced to an application of Hoeffding’s inequality (Hoeffding, 1963) once
we reduced general permutations to swappings (see Theorem 24).

Carrying out this analysis for a given algorithm leads to following VC type generalisa-
tion error bounds. Note that for practical purposes we need to bound the complexi-
ties4 EZ2m

[
N
(

1
2m

,Ll (H) , ρZ
1

)]
and EZ2m [N( 1

2m
,Ll({A(Π � (Z)[1:m]) | i ∈ I2m}), ρZ

1 )] by their
worst-case counterparts (replacing EZ2m by sup � ∈ � 2m) because if we know the distribution
PZ we have solved the learning problem already5.

Theorem 3 (VC bound) For any probability measure PZ, for any hypothesis space H ⊆
YX , for any learning algorithm A : Z(∞) → YX , for any δ ∈ (0, 1], for any loss l : Y ×Y →
4. If the range of the loss function l is {0, 1} then for any double sample � ∈ Z2m,��� 1

2m
, � l (H) , ρ �1 � = ��� � l (H)| � ��� ,

that is, the covering number at scale 1
2m

equals the number of dichotomies of � l (H) on � .
5. An interesting question arising from this analysis is whether or not we can bound

EZ2m � �
	 1
2m

, � l (H) , ρZ
1 �
� by its empirical counterpart

�
	 1
2m

, � l (H) , ρ �1 � using large deviation
bounds for functions of random variables (see (Devroye and Lugosi, 2001; Boucheron et al., 2000) for
first results).
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{0, 1}, with probability at least 1 − δ over the random draw of the training sample z ∈ Zm

of size m, for all hypotheses h ∈ H such that R̂l [h,z] = 0,

Rl [h] ≤ 4

m

(
dH (2m) + ln

(
2

δ

))
. (2)

Furthermore, if R̂l [A (z) ,z] = 0,

Rl [A (z)] ≤ 4

m

(
d� (2m) + ln

(
2

δ

))

where dH and d� are defined as follows:

dH (m) := ln

(
sup

� ∈Zm

N

(
1

m
,Ll (H) , ρ �

1

))
,

d� (m) := ln

(
sup

� ∈Zm

N

(
1

m
,Ll (H� (z)) , ρ�

1

))
,

H� (z) :=

{
A

(
Π � (z) �

1:
| � |2 �
) ∣∣∣∣ i ∈ I| � |

}
. (3)

For any algorithm A which chooses its hypotheses h from some pre-defined hypothesis space
H we know by definition that d� (m) ≤ dH (m) because H� (z) ⊆ H. Hence, exploiting
the specific learning algorithm used we can (perhaps) reduce the complexity compared to
a uniform study of hypothesis space. Note, however, that d� (m) is driven by the worst
training sample zworst ∈ Zm although we might never observe zworst. In the case of uniform
guarantees over some hypothesis space H, a refinement of step 4 has been suggested in
the “luckiness framework” to make the complexity dH dependent on the observed training
sample.

4. The Classical Luckiness Framework

The classical luckiness framework was introduced by Shawe-Taylor et al. (1998). In order
to refine the covering number analysis in step 4 we introduce an ordering between all the
hypotheses to be covered for a given double sample z ∈ Zm. Such an ordering should
be thought of as an a-priori preference for hypothesis h for a given sample; it expresses
how lucky we are to observe the sample when considering the hypothesis h. Formally, this
function, which is also called a luckiness function, is defined by L : YX ×Z(∞) → R. Given
a luckiness function L and a sample z ∈ Zm, we order all hypotheses in descending order
of their luckiness, that is, L (hi,z) ≥ L (hi+1,z) for all i ∈ N. Hence, each particular
hypothesis h ∈ H can be used to index the subset

H (h,z) := {g ∈ H | L (g,z) ≥ L (h,z)}

of hypotheses which are higher up in the order defined by L (i.e. those more “lucky” than
h). This allows the control of the covering number N

(
1
m

,Ll (H (h,z)) , ρ �
1

)
by investigating

only a subset of hypotheses. This is exactly what we need: imposing some empirically
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measurable condition (such as L (h,z) ≥ L0) we are able to reduce the hypotheses space
size as measured by the covering numbers.

The biggest technical difficulty arises because we already introduced a ghost sample z̃.
Since we only observe a training sample z of size m we need to be able to determine the
covering number N

(
1

2m
,Ll (H (h,zz̃)) , ρ� ˜�

1

)
on any double sample (zz̃) ∈ Z2m only using

the value of the luckiness function on the first m examples, L (h,z). If we can find a function
ω : R × N → N such that for all double samples z ∈ Z2m

∀h ∈ H : N

(
1

2m
,Ll (H (h,z)) , ρ �

1

)
≤ ω

(
L
(
h,z[1:m]

)
,m
)

(4)

then we can use ω
(
L
(
h,z[1:m]

)
,m
)

in place of the worst-case covering number dH (2m) and
thus incorporate a dependence on the observed training sample into the bound. Unfortu-
nately, (4) is difficult to establish and the requirement needs to be relaxed by allowing the
function ω to “use” parts of the training sample z[1:m] to estimate N

(
1

2m
,Ll (H (h,z)) , ρ�

1

)
.

More formally, this reads as follows6.

Definition 4 (ω-smallness of the luckiness function) A luckiness function L : YX ×
Z(∞) → R is ω–small, ω : R × N × (0, 1] → N, if for all m ∈ N, all δ ∈ (0, 1] and all
measures PZ,

PZ2m

(
∃h ∈ H : N

(
1

2m
,Ll (H (h,Z)) , ρZ

1

)
> ω

(
L
(
h,Z[1:m]

)
,m, δ

))
< δ .

It is worth noticing that the training sample is used because by virtue of (1), for any
fixed double sample z ∈ Z2m we effectively need to count the number of permutations
(swappings) such that7

N

(
1

2m
,Ll (H (h,z)) , ρ �

1

)
> ω

(
L
(
h,Π � (z)[1:m]

)
,m, δ

)

and ensure that there will never be more than a fraction of δ satisfying the above event. In
summary, if we carry out the above mentioned analysis in step 4 we arrive at the following
main theorem of the luckiness framework.

Theorem 5 (Luckiness bound) Suppose L : YX × Z(∞) → R is a ω–small luckiness
function. For any probability measure PZ, for any binary loss l : Y × Y → {0, 1}, for any
d ∈ N and for any δ ∈ (0, 1], with probability at least 1 − δ over the random draw of the
training sample z ∈ Zm of size m, if R̂l [h,z] = 0 and ω

(
L (h,z) ,m, δ

4

)
≤ 2d then

Rl [h] ≤ 2

m

(
d + log2

(
4

δ

))
. (5)

6. Note that the notion of ω-smallness of the luckiness function is referred to as probable smoothness in the
original paper Shawe-Taylor et al. (1998).

7. Note that Shawe-Taylor et al. (1998) assumed that the luckiness function L is permutation invariant.
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In order to make the bound independent of the choice of d we “stratify” over the values8 of
d ∈

{
1, . . . , m

2

}
by applying Lemma 19 with pd = 2

m
. Hence, we obtain that with probability

at least 1 − δ over the random draw of the training sample z ∈ Zm, for all hypotheses h
with zero training error, R̂l [h,z] = 0, the prediction error satisfies

Rl [h] ≤ 2

m

(⌈
log2

(
ω

(
L (h,z) ,m,

δ

2m

))⌉
+ log2

(
2m

δ

))

︸ ︷︷ ︸
b(h, � )

.

In contrast to the standard VC bound we observe that the complexity strongly depends on
the training sample via the luckiness function L to be chosen beforehand. The luckiness
framework is sometimes also called the data dependent structural risk minimisation frame-
work because the training data z ∈ Zm is used to structure the hypothesis space H into
subsets of increasing complexity H1 (z, δ) ⊆ H2 (z, δ) ⊆ · · · ⊆ H where

Hi (z, δ) :=

{
h ∈ H

∣∣∣∣ ω
(

L (h,z) , |z| , δ

2 · |z|

)
≤ 2i

}
.

5. The Algorithmic Luckiness Framework

The classical luckiness framework solves the problem of sample dependence of the complexity
measure while still suffering from the independence of the specific learning algorithm used.
As a consequence, even if we consider the minimiser h � := argmin {h∈H |

�
Rl[h, � ]=0} b (h,z)

of the bound given in Theorem 5, this theorem is also valid for the following algorithm

Aworst,lucky (z) := argmax
{h∈H | (

�
Rl[h, � ]=0)∧(b(h, � )=b(h � , � ))}

Rl [h] .

Though this algorithm cannot be implemented, we see that we need to take into account the
learning algorithm A to eventually attain better generalisation error bounds. In contrast to
the classical luckiness framework, where a luckiness L (h,z) measures to what extent any
h ∈ YX “fits” to the training sample z ∈ Z(∞) observed, we now only concentrate on the one
function A (z) learned by the given learning algorithm A : Z(∞) → YX . Similarly to the
classical luckiness framework we need to introduce an ordering among all the hypotheses
H� (z) which can be learned by the given learning algorithm (see (3)). The set H� (z) of
hypotheses naturally occurs when introducing a ghost sample z̃ ∈ Zm and applying (1).

Definition 6 (Algorithmic luckiness and lucky sets) Any function L that maps an
algorithm A : Z(∞) → YX and a training sample z ∈ Z(∞) to a real value is called an
algorithmic luckiness. For all even m ∈ N, the lucky set H� (L,z) ⊆ H� (z) ⊆ YX is the

set of all hypotheses that are learned from the first m
2 examples

(
zπ � (1), . . . , zπ � (m

2 )

)
when

permuting the whole sample z, i.e.

H� (L,z) :=

{
A

(
Π � (z) �

1:
| � |2 �
)

| i ∈ I� (L,z)

}
⊆ H� (z) ,

8. Although by definition ω ≤ 22m we can stop the application of Lemma 19 at d = m
2

because by the
boundedness of the loss function Rl [h] ≤ 1.
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where

I� (L,z) :=

{
i ∈ I| � |

∣∣∣∣ L
(

A,Π � (z) �
1:

| � |2 �
)

≥ L

(
A,z �

1:
| � |2 �
)}

.

We know by definition that for any double sample z ∈ Z2m,

∣∣∣Ll (H� (L,z))| �

∣∣∣ ≤ |Ll (H� (L,z))| ≤ |H� (L,z)| ≤ |I� (L,z)| ≤ (2m)!

m!
, (6)

because among the (2m)! = |I2m| many different permutations there are equivalence
classes of size m! where only examples in the second half Π � (z)[(m+1):2m] (ghost sam-
ple) are permuted which does not change A(Π � (z)[1:m]). The general idea we shall pursue
closely follows the argument in the classical luckiness framework. In fact, as we are only
given the training sample (z1, . . . , zm) we need to be able to bound the covering number
N (τ,Ll (H� (L,z)) , ρ �

1 ) only using the luckiness of A on the first half of the double sample
z ∈ Z2m. Again, if we are able to show that with high probability over the random draw
of the training and ghost sample this covering number can be bounded by a function of
the luckiness on the training sample only then we can exploit the value of the luckiness to
devise training sample based bounds on the prediction error.

Definition 7 (ω–smallness of the algorithmic luckiness function) Given an algo-
rithm A : Z(∞) → YX and a loss l : Y × Y → R

+ the algorithmic luckiness function L
is ω–small at scale τ ∈ R

+ if for all m ∈ N, all δ ∈ (0, 1] and all PZ,

PZ2m

(
N

(
τ,Ll (H� (L,Z)) , ρZ

1

)
> ω

(
L
(
A,Z[1:m]

)
, l,m, δ, τ

))
< δ . (7)

The purpose of the function ω is to exploit the value of the luckiness on the first m examples,
L (A, (z1, . . . , zm)), in order to upper bound the covering number of “reachable” hypotheses
(or their induced loss functions) exceeding this value. A hypothesis h ∈ YX can be reached
if the (fixed) learning algorithm returns this function for a certain permutation of the double
sample. Using the ω–smallness of L we have our two main theorems.
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Theorem 8 (Algorithmic luckiness bound for binary losses) Suppose we have
a learning algorithm A : Z(∞) → YX and an algorithmic luckiness L that is ω–small
at scale 1

2m
for a binary loss function l : Y × Y → {0, 1}. For any probability measure

PZ, any d ∈ N and any δ ∈ (0, 1], with probability at least 1 − δ over the random draw
of the training sample z ∈ Zm of size m according to PZm, if R̂l [A (z) ,z] = 0 and
ω
(
L (A,z) , l,m, δ

4 , 1
2m

)
≤ 2d then

Rl [A (z)] ≤ 2

m

(
d + log2

(
4

δ

))
.

Theorem 9 (Algorithmic luckiness bound for bounded losses) Suppose we
have a learning algorithm A : Z(∞) → YX and an algorithmic luckiness L that is
ω–small at scale τ for a bounded loss function l : Y × Y → [0, 1]. For any probability
measure PZ, any d ∈ N and any δ ∈ (0, 1], with probability at least 1 − δ over
the random draw of the training sample z ∈ Zm of size m according to PZm , if
ω
(
L (A,z) , l,m, δ

4 , τ
)
≤ 2d then

Rl [A (z)] ≤ R̂l [A (z) ,z] +

√
8

m

(
d + log2

(
4

δ

))
+ 4τ .

The proofs can be found in Appendix A.6 and A.7; they closely follow the idea out-
lined in Section 3. These two bounds constitute the main results of the algorithmic
luckiness framework. Note that a straightforward application of the multiple testing
lemma (see Lemma 19) allows us to remove the assumption on the computable numbers
log2 (ω (L (A,z) , l,m, δ/4, τ)) because if this number exceeds m/2 both bounds become
trivially true. As a consequence, for any learning algorithm A and any ω–small luckiness
function L, with probability at least 1 − δ over the random draw of the training sample z

of size m, for a binary loss function l : Y × Y → {0, 1} we know that if R̂l [A (z) ,z] = 0,

Rl [A (z)] ≤ 2

m

(⌈
log2

(
ω

(
L (A,z) , l,m,

δ

2m
,

1

2m

))⌉
+ log2

(
2m

δ

))
,

and for any bounded loss l : Y × Y → [0, 1],

Rl [A (z)] ≤ R̂l [A (z) ,z]+

√
8

m

(⌈
log2

(
ω

(
L (A,z) , l,m,

δ

2m
, τ

))⌉
+ log2

(
2m

δ

))
+4τ .

The difference to the main results in the classical luckiness framework (see (5)) and the VC
framework (see (2)) is only within the definition of the complexity:

• In the VC framework, the complexity d = dH (2m) is only dependent on the hypothesis
space H; it is always assumed that A : Z(∞) → H ⊆ YX . The main motivation for
doing so stems from the so-called key theorem of learning theory which says that
the (distribution independent) consistency of the empirical risk minimisation (ERM)
algorithm AERM is equivalent to the uniform convergence of training errors R̂l [h,z]
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to prediction errors Rl [h] over the whole hypothesis space H. The ERM algorithm is
formally defined by

AERM (z) := argmin
h∈H

R̂l [h,z] . (8)

• In the classical luckiness framework, the complexity d =
⌈
log2

(
ω
(
L (h,z) ,m, δ

2m

))⌉

is dependent on the training sample z ∈ Zm via the luckiness function. This allows to
study learning algorithms which map to a much richer space such as YX , given that
the luckiness function L is using the training sample. However, the requirement on
the luckiness function L is very strict since it has to provide a bound on the covering
number which holds uniformly over the hypothesis space regardless of the fact that
the given learning algorithm might never have learned certain hypotheses.

• In the algorithmic luckiness framework, the complexity d =⌈
log2

(
ω
(
L (A,z) , l,m, δ

2m
, τ
))⌉

is dependent on both the training sample z ∈ Zm

and the learning algorithm A via the algorithmic luckiness function L. The extra pa-
rameters are necessary because the algorithmic luckiness framework is also applicable
to the case of non-zero training error R̂l [A (z) ,z].

6. Examples of ω–Small Luckiness Functions

In this section we present several algorithmic luckiness functions which illuminate the re-
lationship of the new framework with already existing mathematical models of learning.
As with the classical luckiness framework, the whole difficulty in the algorithmic lucki-
ness framework has been shifted into finding ω–small luckiness functions L. Since the
ω–smallness condition (7) has to hold regardless of the measure PZ, essentially only two
techniques can be used:

1. If we can show that for a fixed learning algorithm A and a given luckiness L, there
exists a function ω of L (A, (z1, . . . , zm)) that for all double samples z = (z1, . . . , z2m)
is a strict upper bound on the covering number N (τ,Ll (H� (L,z)) , ρ �

1 ), the function
ω will be independent of δ and satisfy the requirements of Definition 7.

2. Since PZm is a product measure, it is (in general) the only measure which is invariant
under any permutation. In other words, if

J (z) ≡ N (τ,Ll (H� (L,z)) , ρ �
1 ) > ω

(
L
(
A,z[1:m]

)
, l,m, δ, τ

)

then it has to hold that

PZ2m (J (Z)) = EI

[
PZ2m|I=

� (J (Π � (Z)))
]

= EZ2m

[
PI|Z2m= � (J (ΠI (z)))

]

for any measure PI over permutations π � . The advantage is that in the last statement
it suffices to show that the fraction of permutations π � which satisfy

N (τ,Ll (H� (L,Π � (z))) , ρ�
1 ) > ω

(
L
(
A,Π � (z)[1:m]

)
, l,m, δ, τ

)

is less than δ for any z ∈ Z2m. Thus, the original problem has been reduced to a
problem of counting permutations. Note that we exploited the fact that, by definition,
N (·, ·, ρ �

1 ) is a permutation invariant function of z.
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These two tricks are the only tools we will need to relate the algorithmic luckiness
framework to previous studies. It is sometimes possible to bound the covering number
N (τ,Ll (H� (L,z)) , ρ �

1 ) using (6).

6.1 VC Dimension of Hypothesis Spaces

In the case of learning algorithms A that choose their hypothesis from a subset H ⊆ YX and
binary loss functions l : Y ×Y → {0, 1} we obtain that, regardless of L, |Ll(H� (L,z))| � | is
no greater than the value of the growth function GH (2m) because the latter is defined as
follows

GH (m) := sup
� ∈Zm

∣∣∣Ll (H)| �

∣∣∣ , (9)

and by definition H � (L,z) ⊆ H for any L and z ∈ Z2m. This quantity can be bounded
from above in terms of the VC-dimension ϑH of H (for details see Vapnik, 1982; Kearns
and Vazirani, 1994; Herbrich, 2002). In particular, the result reads as follows (Vapnik and
Chervonenkis, 1971; Sauer, 1972).

Theorem 10 (Bound on the growth function) For any hypothesis space H ⊆ YX and
any loss function l : Y × Y → {0, 1} the growth function (9) either

1. satisfies the equality
∀m ∈ N : GH (m) = 2m ,

2. or there exists a natural number ϑH ∈ N such that

GH (m)

{
= 2m if m < ϑH

≤∑ϑH
i=0

(
m
i

)
if m ≥ ϑH

.

Note, however, that this bound is very coarse because we neither exploit any prior knowledge
about the algorithm and the unknown probability measure using LVC := −ϑH nor will,
in general, the lucky set H� (LVC,z) be H. The sole justification for the usage of the
growth function as a complexity measure is due to a theorem which became known as the
“key theorem of learning theory” (Vapnik and Chervonenkis, 1991; Vapnik, 1995). The
theorem states that the consistency of the empirical risk minimisation algorithm (see (8))
is equivalent to the uniform convergence9 of training errors to prediction errors over H.
Without any assumptions on PZ, the uniform convergence is equivalent to a sub-exponential
scaling of GH, i.e. finiteness of the VC dimension ϑH. This can be seen by applying Lemma
18 to the expression in Theorem 10 yielding

∀2m > ϑH : log2

(
ω

(
L0, l,m, δ,

1

2m

))
≤ log2 (GH (2m)) ≤ ϑH · log2

(
2em

ϑH

)
. (10)

9. More formally, this reads as follows: For any measure PZ, for any loss functions l : Y × Y → {0, 1}, for

any H ⊆ YX it holds that

∀ε > 0 : lim
m→∞

PZm

� �
sup
h∈H

Rl [h] −
�
Rl [h, Z] � > ε � = 0 ⇔

∀ε > 0 : lim
m→∞

PZm

� �
Rl [

�
ERM (Z)] − inf

h∈H
Rl [h] � > ε � = 0 .
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6.2 Sparsity of Compression Schemes

In Littlestone and Warmuth (1986) and Floyd and Warmuth (1995) a set of learning algo-
rithms was studied which have the appealing property that A (z) can be reproduced from
a smaller subsample z̃ ⊂ z of the training sample z. More formally this reads as follows.

Definition 11 (Compression schemes) The algorithm A : Z(∞) → YX is a compres-
sion scheme if and only if the algorithm can be written as

A (z) = R
(
z � ( � )

)

where R : Z(∞) → YX is called the reconstruction function and is assumed to be permutation
invariant. The compression function C : Z(∞) → N

(∞) maps training samples to index
vectors (i1, . . . , id), 1 ≤ i1 < · · · < id.

An example of a compression scheme is given by the maximum margin algorithm also
known as a support vector machine (Boser et al., 1992; Cortes and Vapnik, 1995) (see also
Section 7): The compression function is given by a run of the maximum margin algorithm
returning only the indices C (z) of the so-called support vectors. By the Karush-Kuhn-Tucker
conditions we know that running the maximum margin algorithm only on the support
vectors, z � ( � ), we will obtain the same hypothesis as running the algorithm on the full
sample z. Intuitively, the smaller the value |C (z)| ∈ {1, . . . , |z|} the less choices the learning
algorithm had in the construction of the hypothesis which should result in a tighter bound
on the prediction error Rl [A (z)] of A (z). In order to cast this notion into the algorithmic
luckiness framework we introduce the sparsity luckiness.

Theorem 12 (Sparsity luckiness) Given an algorithm A : Z(∞) → YX which is a com-
pression scheme the sparsity luckiness Lsparse is defined by

Lsparse (A,z) := − |C (z)| .

The sparsity luckiness is ω–small at any scale τ ∈ R
+ where

ω (L0, l,m, δ, τ) =

−L0∑

i=0

(
2m

i

)
. (11)

Proof Let us consider any double sample z ∈ Z2m. According to Definition 7 and
(6) it suffices to bound the size of |I� (Lsparse,z)| because this is an upper bound on
|Ll (H� (Lsparse,z))|. Let k be the sparsity of A on (z1, . . . , zm), i.e. k =

∣∣C
(
z[1:m]

)∣∣. In
order to generate a new hypothesis using R we have to find another subsample z̃ ⊂ z of
size not larger than k because only permutations where the luckiness does not decrease are
considered in I� (Lsparse,z). Note that the number of i distinct indices from {1, . . . , 2m}
is exactly

(2m
i

)
. Noting that the order of the examples is irrelevant for the reconstruction

function (see Definition 11), there are no more than
∑k

i=0

(2m
i

)
distinct subsets of size not

greater than k of the double sample z ∈ Z2m which could (potentially) be used by the
learning algorithm to reconstruct hypothesis. The theorem is proven.
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If we apply Lemma 18 to (11) we obtain that the effective complexity of the function learned
by a compression scheme is

log2 (ω (L0, l,m, δ, τ)) ≤ −L0 · log2

(
2em

−L0

)
,

which should be compared with the corresponding result (10) of VC theory. In contrast to
the results by Floyd and Warmuth (1995) we do not need to reduce the effective training
sample size to (m − |C (z)|) at the price of 2m rather than m in the binomial term and an
extra factor of 2 resulting from the basic lemma. For large training sample sizes, the positive
effect is that the training error is not discounted by the factor m−| � ( � )|

m
(see Graepel et al.,

2000) but only the complexity term is influenced. Finally we see that the sparsity luckiness
makes use of both the learning algorithm (via C) and the training sample (via |C (z)|) which
somehow explains why compression bounds are very tight in practical applications.

6.3 Uniform Algorithmic Stability

The idea behind uniform algorithmic stability is as follows (Bousquet and Elisseeff, 2001):
If the influence of a single training example (xi, yi) ∈ z on the learned function A (z) is
decreasing with increasing training sample size m, then it should be possible to exploit this
stability for bounding the generalisation error. As we are only interested in the predictions
of the function learned on new test point, the influence is usually measured by the maximum
change in the functions output. More formally, this reads as follows.

Definition 13 (Uniform stability) Let (βi)i∈ � be a decreasing sequence of positive real

numbers. A learning algorithm A : Z(∞) → YX is said to be βm–stable w.r.t. the loss
function l : Y × Y → R if for all i ∈ {1, . . . ,m},

∀z ∈ Zm : ∀ (x, y) ∈ Z : |l (A (z) (x) , y) − l (A ((z1, . . . , zi−1, zi+1, . . . , zm)) (x) , y)| ≤ βm .

Then the following generalisation error bound was proved by Bousquet and Elisseeff (2001).

Theorem 14 (Algorithmic stability bound) Suppose the learning algorithm A :
Z(∞) → YX is βm–stable w.r.t. a loss function l : Y × Y → [0, 1], with probability at
least 1 − δ over the random draw of training samples z ∈ Zm,

Rl [A (z)] ≤ R̂l [A (z) ,z] + 2βm +

√

2m

(
4βm +

1

m

)2

ln

(
1

δ

)
. (12)

Note that the last term dominates the bound. Thus, in order to have a convergence of
R̂l [A (z) ,z] to Rl [A (z)], βm has to decrease at a rate faster than m− 1

2 , i.e. we require

lim
m→∞

βm ·
√

m = 0 . (13)

In order to relate algorithmic luckiness to uniform algorithmic stability we consider a more
refined version of uniform stability. Broadly speaking, since we consider a ghost sample of
size m it is only necessary to know by how much the loss function is changing on the double
sample when swapping from the ghost sample and training sample.
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Definition 15 (ν–stability) A permutation invariant learning algorithm A : Z(∞) → YX

is said to be ν–stable w.r.t. the loss function l : Y×Y → R if for all double samples z ∈ Z2m

and all i, j ∈ I2m,

1

2m

2m∑

k=1

∣∣∣l
(
A

(
Π � (z)[1:m]

)
(xk) , yk

)
− l
(
A

(
Π� (z)[1:m]

)
(xk) , yk

)∣∣∣ ≤ ν (m,D (i, j)) ,

where D (i, j) := m − |{i1, . . . , im} ∩ {j1, . . . , jm}|.

For permutation invariant learning algorithms uniform stability is a stronger notion of
stability because any permutation invariant and uniformly stable algorithm is ν–stable.

Lemma 16 (Uniform stability implies ν–stability) If a permutation invariant learn-
ing algorithm A : Z(∞) → YX is βm–stable w.r.t. the loss function l : Y ×Y → R then it is
ν–stable with

ν (m, d) = 2 · d · βm .

Proof Consider an arbitrary z ∈ Z2m. Given two permutations π � ∈ I2m and π� ∈ I2m

such that D (i, j) = d, without loss of generality we can assume that i1 6= j1, . . . , id 6= jd

and id+1 = jd+1, . . . , im = jm because A is permutation invariant. Then we can always
find d permutations π �

1 , . . . , π
�
d

such (ik)1 6= j1, . . . , (ik)d−k 6= jd−k and (ik)d−k+1 =
jd−k+1, . . . , (ik)m = jm. For a given (x, y) ∈ Z, let lk (x, y) := l(A(Π �

k
(z)[1:m])(x), y)

and lk\n(x, y) := l(A(Π �
k
(z)(1,...,n−1,n+1,...,m))(x), y). By Definition 13 we know that for all

(x, y) ∈ Z

|lk (x, y) − lk+1 (x, y)| =
∣∣lk (x, y) − lk\k+1 (x, y) + lk\k+1 (x, y) − lk+1 (x, y)

∣∣
≤

∣∣lk (x, y) − lk\k+1 (x, y)
∣∣+
∣∣lk\k+1 (x, y) − lk+1 (x, y)

∣∣
≤ 2 · βm .

Noticing that A

(
Π � (z)[1:m]

)
= h0 and A

(
Π� (z)[1:m]

)
= hd we thus obtain

|l0 (xj, yj) − ld (xj , yj)| =

∣∣∣∣∣

d−1∑

k=0

lk (xj, yj) − lk+1 (xj, yj)

∣∣∣∣∣

≤
d−1∑

k=0

|lk (xj, yj) − lk+1 (xj, yj)|

≤ d · 2 · βm .

The lemma is proven.

Since D (i, j) ≤ m by definition we know that the hypothesis A
(
z[1:m]

)
covers all possible

loss functions Ll (H� (z)) at scale ν (m,m) w.r.t. ρ�
1 . As a consequence, for any double

sample z ∈ Z2m and any luckiness function, ω
(
L
(
A,z[1:m]

)
, l,m, δ, ν (m,m)

)
= 1. Using

this result together with Theorem 9 we have shown that for any ν–stable (βm–stable)
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learning algorithm A : Z(∞) → YX with probability at least 1− δ over the random draw of
training samples z,

Rl [A (z)] ≤ R̂l [A (z) ,z] +

√
8

m
log2

(
4

δ

)
+ 4ν (m,m)

≤ R̂l [A (z) ,z] +

√
8

m
log2

(
4

δ

)
+ 8mβm ,

where the last line follows from Lemma 16. In order to have a convergence of R̂l [A (z) ,z]
to Rl [A (z)], βm has to decrease at a rate faster than m−1, i.e.

lim
m→∞

βm · m = 0 ,

which should be compared with (13).

Our aim was not to improve the result in Theorem 14 but to reveal the relation of algo-
rithmic stability results — which are usually proved using concentration inequalities — to
algorithmic luckiness. The result obtained is weaker insofar as it makes a stronger require-
ment on the behaviour of βm as a function of m. On the other hand, the way we obtained
the result involved some very crude bounding steps. In order to improve the current result
two ways are conceivable:

1. Rather than covering the induced loss function set by one single swapping at a very
large scale of ν (m,m), one could envisage a larger cover at a smaller scale with the
concomitant reduction of ν (m, ·). One approach to cover this set is to construct a
cover of I2m using the D (i, j)–metric. This can be related to the Hamming distance
of binary strings and thus one can use results on the maximal size of a constant weight
code to bound the covering number we seek McEliece et al. (see 1977).

2. Instead of using Lemma 16 one should try to bound ν (·, ·) directly for some particular
algorithms. In contrast to uniform stability, it would suffice to bound ν with high
probability which can be readily incorporated into the notion of ω–smallness.

Finally, we remark that results such as Theorem 14 should be interpreted very carefully in
relation to particular algorithms. For example, although Bousquet and Elisseeff have shown
for algorithms which minimise a regularised functional of the form

Rreg [h,z] := R̂l [h,z] + λ ‖h‖
that βm ≤ c

λm
for some constants c ∈ R

+, one should not simply substitute this bound
into (12) and consider the scaling behaviour in m since in practice the optimal λ (often
chosen by cross-validation) will itself be a function of m. Furthermore, it is not possible
to determine the scaling behaviour of λ as a function of m a-priori because it depends on
the unknown target function. It would seem that some form of luckiness argumentation is
necessary to allow λ to be dependent on the training sample. In contrast to concentration
inequalities (which so far seems to require a uniform notion of stability) the algorithmic
luckiness framework offers the advantage of exploiting knowledge of the target function
directly using the luckiness function (which, so far, was constant and independent of the
sample).
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7. An Application of Algorithmic Luckiness to Linear Classifiers

In this section we study the maximum margin algorithm for linear classifiers, AMM : Z(∞) →
H � , where H � := {x 7→ 〈φ (x) ,w〉 |w ∈ K} and φ : X → K ⊆ `N

2 is known as the feature
mapping (see Boser et al., 1992; Cortes and Vapnik, 1995, for details). As our hypotheses h ∈
H � map to real-valued functions we define the zero-one loss w.r.t. sign (h) as l (h (x) , y) =
l0−1 (h (x) , y) := Iyh(x)≤0. Classical VC generalisation error bounds exploit the fact that
ϑH � = N and thus use (10) in Theorem 8. According to this result it seems crucial that we
have more training examples than dimensions of feature space, m � N , because otherwise
the resulting bound on the prediction error becomes trivial. The impossibility to obtain
any practically useful results (bounds that are independent of N) in the VC framework is
believed to be closely related to the intuitive notion of the curse of dimensionality. However,
Shawe-Taylor et al. (1998) have shown that we can use fatH � (γ � (w)) ≤ (γ � (w))−2 (at the
price of an extra log2 (32m) factor) in place of ϑH � where

γ � (w) := min
(xi,yi)∈ �

yi 〈φ (xi) ,w〉
‖w‖

is known as the margin. This result was proven essentially using a luckiness-based reason-
ing10. The most important difference to the VC-type result lies in the independence of the
bound on the number of dimensions of feature space, N . If the training sample z could be
correctly classified with a hypothesis hw that has a margin γ � (w) which is substantially
larger than

√
m then, regardless of the dimensionality N of the feature space K, hw has a

small prediction error. This result forms the theoretical basis for the maximum margin al-
gorithm which finds the weight vector wMM that maximises γ � (w). It is known (Schölkopf
et al., 2001) that wMM can be written as a linear combination of the φ (xi), i.e.

wMM =
m∑

i=1

αiφ (xi) .

Interestingly, however, the bound by Shawe-Taylor et al. (1998) does not only hold for the
large margin classifier wMM but for every classifier which has zero training error.

In the following we shall present an algorithmic luckiness function which is only valid for
the maximum margin algorithm. For notational convenience, we shall assume that AMM :
Z(∞) → R

(∞) maps to the expansion coefficients α such that ‖w � ‖ = 1 where w � :=∑| � |
i=1 αiφ (xi). Thus, ‖AMM (z)‖1 means the 1–norm of the expansion coefficients α. Then,

our new margin bound follows from the following theorem together with Theorem 8.

10. The derivation of this result needs a slightly more complicated version of ω–smallness of the luckiness
function Lmargin (w, � ) := −γ � (w) (see Shawe-Taylor et al. (1998) for details).
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Theorem 17 Let εi (x) be the smallest ε > 0 such that {φ (x1) , . . . ,φ (xm)} can be
covered by at most i balls of radius less than or equal ε. Let Γ� (w) be defined by

Γ � (w) := min
(xi,yi)∈ �

yi 〈φ (xi) ,w〉
‖φ (xi)‖ · ‖w‖ . (14)

For the zero-one loss l0−1 and the maximum margin algorithm AMM, the luckiness
function

LMM (AMM,z) := −min



i = 4j, j ∈ N

∣∣∣∣∣∣
i ≥ 4 ·

(
ε i

4
(x) · ‖AMM (z)‖1

Γ �

(
w�

MM( � )

)
)2


 , (15)

is ω-small at scale 1/2m w.r.t. the function

ω

(
L0, l,m, δ,

1

2m

)
=

(
2em

−L0

)−2L0

. (16)

Proof First we note that by a slight refinement of a theorem of Makovoz (1996) (see
Corollary 29 in Appendix A.8) we know that for any z ∈ Zm there exists a weight vector
ŵ =

∑m
i=1 α̂iφ (xi) such that

∥∥ŵ −w�
MM( � )

∥∥2 ≤ Γ2
�

(
w�

MM( � )

)
(17)

and α̂ ∈ R
m has no more than −L (AMM,z) non-zero components. Although only w�

MM( � )

is of unit length, we show in Theorem 30 in Appendix A.8 that (17) implies
〈
w�

MM( � ),
ŵ

‖ŵ‖

〉
≥
√

1 − Γ2
�

(
w�

MM( � )

)
.

Using equation (10) of Herbrich and Graepel (2001) this implies that Γ� (ŵ) > 0, that
is, ŵ correctly classifies z ∈ Zm. Consider a fixed double sample z ∈ Z2m and let
L0 := L (AMM, (z1, . . . , zm)). By virtue of Definition 6 and the above argument we only need
to consider permutations π � such that there exists a weight vector ŵ =

∑m
j=1 α̂jφ (xj) with

no more than L0 non-zero α̂i. As there are exactly
(2m

i

)
distinct choices of i ∈ {1, . . . , L0}

training examples from the 2m examples z there are no more than (2em/L0)
L0 different sub-

samples to be used in ŵ (see Lemma 18). For each particular subsample z ⊆ z the weight
vector ŵ is a member of the class of linear classifiers in a L0 (or less) dimensional space.
Thus, from (10) it follows that for the given subsample z there are no more (2em/L0)

L0

different dichotomies induced on the double sample z ∈ Z2m. As this holds for any double
sample, the theorem is proven.

There are several interesting features about this result. Firstly, observe that ‖AMM (z)‖1

is a measure of sparsity of the solution found by the maximum margin algorithm
which, in the present case, is combined with margin. Note that for normalised data,
i.e. ‖φ (·)‖ = constant, the two notion of margins coincide, i.e. Γ� (w) = γ � (w). Sec-
ondly, the quantity εi (x) can be considered as a measure of the distribution of the mapped
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data points in feature space. From the definition, for all i ∈ N, εi (x) ≤ ε1 (x) ≤
maxj∈{1,...,m} ‖φ (xj)‖. It is worthwhile mentioning that bounding εi (x) from above by
maxj∈{1,...,m} ‖φ (xj)‖ is too crude a step and will lead to a bound on the effective complexity
dlog2 (ω (L0, l0−1,m, ·, 1/2m))e which scales as Γ−4

�

(
w�

MM( � )

)
as opposed to Γ−2

�

(
w�

MM( � )

)

because ‖AMM (z)‖1 = Γ−1
�

(
w�

MM( � )

)
(Vapnik, 1995). Supposing that the two class-

conditional probabilities PX|Y=y are highly clustered, ε2 (x) will be very small. An extension
of this reasoning is useful in the multi-class case; binary maximum margin classifiers are
often used to solve multi-class problems (Vapnik, 1998; Weston and Watkins, 1999). There
appears to be also a close relationship of εi (x) with the notion of kernel alignment recently
introduced in (Cristianini et al., 2002). The computation of εi (x) seems closely related to
some classical questions in computational geometry and there are some fast approximate al-
gorithms (Feder and Greene, 1988; Har-Peled, 2001). Finally, one can use standard entropy
number techniques to bound εi (x) in terms of eigenvalues of the inner product matrix or its
centred variants. It is worth mentioning that although our aim was to study the maximum
margin algorithm the above theorem actually holds for any algorithm whose solution can
be represented as a linear combination of the data points. This includes for example the
perceptron learning algorithm (Rosenblatt, 1958), Bayes point machines (Herbrich et al.,
2001; Ruján and Marchand, 2000), relevance vector machines (Tipping, 2001) and the Fisher
discriminant (Mika et al., 1999).

8. Conclusions

In this paper we have introduced a new theoretical framework to study the generalisation
error of learning algorithms. In contrast to previous approaches, we considered specific
learning algorithms rather than specific hypothesis spaces. We introduced the notion of
algorithmic luckiness which allowed us to devise data dependent generalisation error bounds.
Thus we were able to relate the compression framework of Littlestone and Warmuth with
the VC framework. Furthermore, we presented a new bound for the maximum margin
algorithm which not only exploits the margin but also the distribution of the actual training
data in feature space. Perhaps the most appealing feature of our margin based bound is
that it naturally combines the three factors considered important for generalisation with
linear classifiers: margin, sparsity and the distribution of the data. Further research is
concentrated on studying Bayesian algorithms and whether one can avoid the union bound
argument using other techniques.
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Appendix A. Proofs

A.1 An Upper Bound on the Sum of Binomials

We will sometimes use the following upper bound on the sum of binomials.

Lemma 18 (Bound on the sum of binomials) For any m ∈ N and n ∈ {1, . . . ,m}
n∑

i=0

(
m

i

)
<
(em

n

)n

.

Proof The proof follows from the binomial theorem together with the inequality 1 + x <
exp (x) for x 6= 0. Noticing that

(
m
n

)n−i ≥ 1 for all i ∈ {0, . . . , n} we have

n∑

i=0

(
m

i

)
≤

n∑

i=0

(
m

i

)(m

n

)n−i

=
(m

n

)n
n∑

i=0

(
m

i

)( n

m

)i

≤
(m

n

)n
m∑

i=0

(
m

i

)( n

m

)i

=
(m

n

)n (
1 +

n

m

)m

<
(m

n

)n

exp (n) =
(em

n

)n

.

A.2 Multiple Testing Lemma

The following result is essentially a union bound argument which allows us to combine
several generalisation error bounds into a uniform statement. This result has its roots in
classical statistical test theory and is known as the Bonferroni lemma.

Lemma 19 (Multiple testing) Suppose we are given a set {Υ1, . . . ,Υs} of s measurable
logical formulae Υi : Z(∞)× (0, 1] → {true, false} together with s positive numbers p1, . . . , ps

which sum up to one. If, for some probability measure PZ,

∀i ∈ {1, . . . , s} : ∀δ ∈ (0, 1] : PZm (Υi (Z, δ)) ≥ 1 − δ ,

then, for the same probability measure PZ,

∀δ ∈ (0, 1] : PZm (Υ1 (Z, δp1) ∧ · · · ∧ Υs (Z, δps)) ≥ 1 − δ .

Proof The proof is a simple union bound argument. By definition

PZm (Υ1 (Z, δp1) ∧ · · · ∧ Υs (Z, δps)) = 1 −PZm (¬Υ1 (Z, δp1) ∨ · · · ∨ ¬Υs (Z, δps))

≥ 1 −
s∑

i=1

PZm (¬Υi (Z, δpi))

> 1 −
s∑

i=1

δpi = 1 − δ

s∑

i=1

pi = 1 − δ .
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A.3 Basic Lemma for Hypothesis Spaces

In this subsection we present the proof of two basic lemmas originally developed by Vapnik
and Chervonenkis (1971). In contrast to their result we do not restrict the ghost sample to
be of the same size as the training sample.

Lemma 20 (Basic lemma for consistent classifiers) For all binary losses l : Y×Y →
{0, 1}, all probability measures PZ, all hypothesis spaces H ⊆ YX , all measurable formulae
Υ : Z(∞) → {true, false} and all n > m, if ε (n − m) ≥ 2 we have

PZm

(
∃h ∈ H : (Rl [h] > ε) ∧

(
R̂l [h,Z] = 0

)
∧ Υ(Z)

)
<

2 · PZn

(
∃h ∈ H :

(
R̂l

[
h,Z[1:m]

]
= 0
)
∧
(
R̂l

[
h,Z[(m+1):n]

]
≥ ε

2

)
∧ Υ

(
Z[1:m]

))
.

Proof Given a sample z ∈ Zm let H (z) ∈ H be such that (Rl [H (z)] > ε) ∧(
R̂l [H (z) ,z] = 0

)
if such an hypothesis exists or any h ∈ H otherwise. Let us introduce

the following shorthand notations where z ∈ Zm and z̃ ∈ Zn−m

Q1 (zz̃) ≡ R̂l [H (z) , z̃] ≥ ε

2
, Q2 (z) ≡

(
R̂l [H (z) ,z] = 0

)
∧ Υ(z) ,

Q3 (z) ≡ Rl [H (z)] > ε .

Then, it holds that

PZn

(
Q1 (Z) ∧ Q2

(
Z[1:m]

))
≥ PZn

(
Q1 (Z) ∧ Q2

(
Z[1:m]

)
∧ Q3

(
Z[1:m]

))

= P
Zn|Q2(Z[1:m])∧Q3(Z[1:m]) (Q1 (Z)) PZn

(
Q2

(
Z[1:m]

)
∧ Q3

(
Z[1:m]

))

= EZm
1

[
IQ2(Z1)∧Q3(Z1)PZ

n−m
2 |Zm

1 = � 1
(Q1 (z1Z2))

]
.

Observe that by the conditioning we know that Rl [H (z)] > ε whenever we have to evaluate
the probability of Q1 (z1z2) over the random draw of z2 ∈ Zn−m. Now, this probability is
the probability that a binomially distributed random variable with an expectation of more
than ε is greater than or equal to ε(n−m)

2 ≥ 1 which is equivalent to ε (n − m) ≥ 2. Hence,
this quantity satisfies

P
Z

n−m
2 |Zm

1 = � 1
(Q1 (z1Z2)) ≥ 1 − (1 − ε)n−m > 1 − exp (−ε (n − m)) >

1

2
,

where we have used the assumption that ε (n − m) ≥ 2. As a consequence we have shown

PZn

(
∃h ∈ H :

(
R̂l

[
h,Z[1:m]

]
= 0
)
∧
(
R̂l

[
h,Z[(m+1):n]

]
≥ ε

2

)
∧ Υ

(
Z[1:m]

))

= PZn

(
Q1 (Z) ∧ Q2

(
Z[1:m]

))
>

1

2
PZm (Q2 (Z) ∧ Q3 (Z))

=
1

2
PZm

(
∃h ∈ H : (Rl [h] > ε) ∧

(
R̂l [h,Z] = 0

)
∧ Υ(Z)

)
.
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Lemma 21 (General basic lemma) For all bounded loss functions l : Y × Y → [0, 1],
all probability measures PZ, all hypothesis spaces H ⊆ YX , all measurable formulae Υ :
Z(∞) → {true, false} and all n > m, if ε2 (n − m) > 2 we have

PZm

((
sup
h∈H

Rl [h] − R̂l [h,Z] > ε

)
∧ Υ(Z)

)
<

2 · PZn

((
sup
h∈H

R̂l

[
h,Z[(m+1):n]

]
− R̂l

[
h,Z[1:m]

]
>

ε

2

)
∧ Υ

(
Z[1:m]

))
.

Proof Given a sample z ∈ Zm let H (z) ∈ H be given by

H (z) := argmax
h∈H

Rl [h] − R̂l [h,z] .

Let us introduce the following shorthand notations, where z ∈ Zm and z̃ ∈ Zn−m

Q1 (zz̃) ≡
(
R̂l [H (z) , z̃] − R̂l [H (z) ,z] >

ε

2

)
∧ Υ(z ) ,

Q2 (z) ≡
(
Rl [H (z)] − R̂l [H (z) ,z] > ε

)
∧ Υ(z) ,

Q3 (zz̃) ≡
(
Rl [H (z)] − R̂l [H (z) , z̃] <

ε

2

)
.

Since Q2 (z) ∧ Q3 (zz̃) ⇒ Q1 (zz̃) we know that

PZn (Q1 (Z)) ≥ PZn

(
Q2

(
Z[1:m]

)
∧ Q3 (Z)

)
= P

Zn|Q2(Z[1:m]) (Q3 (Z)) PZn

(
Q2

(
Z[1:m]

))

= EZm
1

[
IQ2(Z1)PZ

n−m
2 |Zm

1 = � 1
(Q3 (z1Z2))

]
.

Now, the probability P
Z

n−m
2 |Zm

1 = � 1
(Q3 (z1Z2)) is the probability that the mean of n − m

random variables taking values in [0, 1] is no more than ε
2 smaller than their common expec-

tation Rl [H (z1)]. According to Hoeffding’s inequality (Hoeffding, 1963) this probability is

bounded from below by 1 − exp
(
− ε2(n−m)

2

)
. Thus

P
Z

n−m
2 |Zm

1 = � 1
(Q3 (z1Z2)) ≥ 1 − exp

(
−ε2 (n − m)

2

)
> 1 − exp (−1) >

1

2
,

where we used the assumption ε2 (n − m) > 2. In summary, we have

PZn

((
sup
h∈H

R̂l

[
h,Z[(m+1):n]

]
− R̂l

[
h,Z[1:m]

]
>

ε

2

)
∧ Υ

(
Z[1:m]

))

= PZn (Q1 (Z)) >
1

2
PZm (Q2 (Z))

=
1

2
PZm

((
sup
h∈H

Rl [h] − R̂l [h,Z] > ε

)
∧ Υ(Z)

)
.

Note that for the special case of n = 2m we obtain the basic lemma in its standard form.
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A.4 Basic Lemma for Learning Algorithms

In this subsection we prove two modified versions of the basic lemmas of the previous section.
Our extension makes effective use of the learning algorithm used since we only consider the
prediction error of the hypotheses learned using a fixed learning algorithm.

Lemma 22 (Basic lemma for consistent algorithms) For all binary losses l : Y ×
Y → {0, 1}, all probability measures PZ, all algorithms A : Z(∞) → YX , all measurable
formulae Υ : Z(∞) → {true, false} and all n > m, if ε (n − m) ≥ 2,

PZm

(
(Rl [A (Z)] > ε) ∧

(
R̂l [A (Z) ,Z] = 0

)
∧ Υ(Z)

)
<

2 · PZn

((
R̂l

[
A
(
Z[1:m]

)
,Z[(m+1):n]

]
≥ ε

2

)
∧
(
R̂l

[
A
(
Z[1:m]

)
,Z[1:m]

]
= 0
)
∧ Υ

(
Z[1:m]

))
.

Proof Let us introduce the following shorthand notations where z ∈ Zm and z̃ ∈ Zn−m

Q1 (zz̃) ≡ R̂l [A (z) , z̃] ≥ ε

2
, Q2 (z) ≡

(
R̂l [A (z) ,z] = 0

)
∧ Υ(z) ,

Q3 (z) ≡ Rl [A (z)] > ε .

By simple probability theory we know that

PZn

(
Q1 (Z) ∧ Q2

(
Z[1:m]

))
≥ PZn

(
Q1 (Z) ∧ Q2

(
Z[1:m]

)
∧ Q3

(
Z[1:m]

))

= P
Zn|Q2(Z[1:m])∧Q3(Z[1:m]) (Q1 (Z)) PZn

(
Q2

(
Z[1:m]

)
∧ Q3

(
Z[1:m]

))

= EZm
1

[
IQ2(Z1)∧Q3(Z1)PZ

n−m
2 |Zm

1 = � 1
(Q1 (z1Z2))

]
.

Observe that by the conditioning we know that Rl [A (z1)] > ε whenever we have to evaluate
the probability of Q1 (z1z2) over the random draw of z2 ∈ Zn−m. Now this probability is
the probability that a binomially distributed random variable with an expectation of more
than ε is greater than or equal to ε(n−m)

2 ≥ 1 which is equivalent to ε (n − m) ≥ 2. Hence,
this quantity is bounded from below by

P
Z

n−m
2 |Zm

1 = � 1
(Q1 (z1Z2)) ≥ 1 − (1 − ε)n−m > 1 − exp (−ε (n − m)) >

1

2
,

where we have used the assumption that ε (n − m) ≥ 2. As a consequence we have shown

PZn

(
Q1 (Z) ∧ Q2

(
Z[1:m]

))
>

1

2
PZm (Q2 (Z) ∧ Q3 (Z)) .

Lemma 23 (General basic lemma for learning algorithms) For all bounded loss
functions l : Y ×Y → [0, 1], all probability measures PZ, all algorithms A : Z(∞) → YX , all
measurable formulae Υ : Z(∞) → {true, false} and all n > m, if ε2 (n − m) > 2,

PZm

((
Rl [A (Z)] − R̂l [A (Z) ,Z] > ε

)
∧ Υ(Z)

)
<

2 · PZn

((
R̂l

[
A
(
Z[1:m]

)
,Z[(m+1):n]

]
− R̂l

[
A
(
Z[1:m]

)
,Z[1:m]

]
>

ε

2

)
∧ Υ

(
Z[1:m]

))
.
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Proof Let us introduce the following shorthand notations where z ∈ Zm and z̃ ∈ Zn−m

Q1 (zz̃) ≡
(
R̂l [A (z) , z̃] − R̂l [A (z) ,z] >

ε

2

)
∧ Υ(z) ,

Q2 (z) ≡
(
Rl [A (z)] − R̂l [A (z) ,z] > ε

)
∧ Υ(z) ,

Q3 (zz̃) ≡
(
Rl [A (z)] − R̂l [A (z) , z̃] <

ε

2

)
.

Since Q2 (z) ∧ Q3 (zz̃) ⇒ Q1 (zz̃) we know that

PZn (Q1 (Z)) ≥ PZn

(
Q2

(
Z[1:m]

)
∧ Q3 (Z)

)
= P

Zn|Q2(Z[1:m]) (Q3 (Z)) PZn

(
Q2

(
Z[1:m]

))

= EZm
1

[
IQ2(Z1)PZ

n−m
2 |Zm

1 = � 1
(Q3 (z1Z2))

]
.

Now, the probability P
Z

n−m
2 |Zm

1 = � 1
(Q3 (z1Z2)) is the probability that the mean of n − m

random variables taking values in [0, 1] is no more than ε
2 smaller than their common expec-

tation Rl [A (z1)]. According to Hoeffding’s inequality (see Hoeffding, 1963) this probability

is bounded from below by 1 − exp
(
− ε2(n−m)

2

)
. Thus

P
Z

n−m
2 |Zm

1 = � 1
(Q3 (z1Z2)) ≥ 1 − exp

(
−ε2 (n − m)

2

)
> 1 − exp (−1) >

1

2
,

where we used the assumption ε2 (n − m) > 2. In summary, we have

PZn (Q1 (Z)) >
1

2
PZm (Q2 (Z)) .

A.5 Reduction of general permutations to swapping permutations

In this section we prove a simple result on the reduction of all (2m)! permutations to 2m

swapping permutations if an event is independent of the ordering within the first and the
second m examples11. The theorem reads as follows.

Theorem 24 (General permutations to swappings) For any m ∈ N, consider a logi-
cal formula Υ : Z2m → {true, false} with the property

∀z ∈ Z2m : ∀i1 ∈ Im : ∀i2 ∈ Im : Υ (z) = Υ
(
Π �

1

(
z[1:m]

)
Π �

2

(
z[(m+1):2m]

))
. (18)

Then there exists a non-zero measure PI over I2m given by (20) such that

∀z ∈ Z2m : PI|Z2m= � (Υ (ΠI (z))) =
1

2m

∑

� ∈{0,1}m

IΥ(Σ � ( � )) ,

11. The importance of this result can best be seen by looking at its application in the proofs of Theorems
8 and 9: by virtue of Theorem 24 we can use all permutations (2m)! for construction of the cover, yet
resort to a simple counting argument on swappings for the single tail bounds. This would not be possible
if we use the 2m swapping permutations from the beginning (see Anthony and Shawe-Taylor (1993) for
a similar approach).
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that is the probability of a permutation such that Υ(Π� (z)) is true can be computed by
counting the number of swappings Σ � such that Υ(Σ � (z)) is true.

Proof In the course of the proof we shall use the shorthand notation # (i) to denote the
number of swappings from the first m to the second m examples induced by π � ; i.e.

∀i ∈ I2m : # (i) := |{j ∈ {1, . . . ,m} | π� (j) > m}| . (19)

In the case of a swapping permutation σ � , # (s) :=
∑m

i=1 si. For k = 0, . . . m let Jk ⊂
I2m and Sk ⊂ {0, 1}m be the set of parameters for general and swapping permutations
respectively, which swap exactly k examples from the first m to the second m examples; i.e.

Jk := {i ∈ I2m | #(i) = k} , Sk := {s ∈ {0, 1}m | #(s) = k} .

Observe that |Jk| =
((

m
k

)
(m!)

)2
because there are

(
m
k

)
choices of k distinct indices from

{1, . . . ,m} and {m + 1, . . . , 2m} (making the
((

m
k

))2
term) and any of the m! permutations

of the two half samples of size m (before swapping) leads to a new permutation. Furthermore
we know that |Sk| =

(
m
k

)
because this is the number of ways to choose k distinct indices

from the set {1, . . . ,m}. Using the above notation consider the distribution P
swap
I

:

P
swap
I

(i) :=

(
m

#(
�
)

)

2m
· 1∣∣J#(

�
)

∣∣ . (20)

In other words, P
swap
I

is a distribution over all permutations π � which is uniform for a given
number # (i) of swappings but is not uniform overall. To see that this is a valid probability
measure observe

∑
�
∈I2m

P
swap
I

(i) =

m∑

k=0

∑
�
∈Jk

P
swap
I

(i) =

m∑

k=0

∑
�
∈Jk

(
m
k

)

2m
· 1

|Jk|
=

1

2m

m∑

k=0

(
m

k

)
· |Jk|
|Jk|

= 1 .

Consider an arbitrary but fixed z ∈ Z 2m. For a fixed value k of # (i) we will now show

that Jk can be subdivided into |Sk| non-overlapping subsets Jk,1, . . . , Jk,|Sk| of size |Jk|
|Sk|

using

Sk =
{
s1, . . . , s|Sk|

}
such that

∀j ∈ {1, . . . , |Sk|} : ∀i ∈ Jk,j : Υ (Π � (z)) = Υ
(
Σ �

j (z)
)

. (21)

In order to prove this we demonstrate that any permutation π � for i ∈ Jk can be constructed
by any swapping permutation Σ � for s ∈ Sk applied to (1, . . . , 2m). The result follows

because |Jk|
|Sk|

=
(
m
k

)
(m!)2 is an integer. Consider a binary vector s ∈ Sk and let j1, . . . , jk ∈

{1, . . . ,m} be the indices at which sj1 = · · · = sjk
= 1. Now we will separately permute

(1, . . . ,m) and (m + 1, . . . , 2m) such that the k indices in {im+1, . . . , i2m} which are less
than or equal to m are at the positions j1, . . . , jk and the k indices in {i1, . . . , im} which are
greater than m are at the positions j1 + m, . . . , jk + m. Note that these permutations do
not change the function Υ due to (18). Now apply the swapping permutation σ � . Then we
can find two permutations of the resulting half samples (which, again, do not change the
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Figure 1: Suppose we want to permute the numbers (1, . . . , 28) (a) to obtain the permuta-
tion (2, 18, . . . , 15, 27, 23, 16, . . . , 28, 25) (d), only using the swapping permutation
σs with s = (0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 1) (the vertical black lines). Since we
know that any permutation within the first and the second m = 14 indices does
not change the value of the function Υ we proceed as follows: having identified the
4 indices which are swapped from the first to the second half (denoted by shaded
boxes), i.e. (3, 5, 9, 11) and (15, 18, 24, 27), we permute (1, . . . , 14) and (15, . . . , 28)
such that the four numbers are at the 2nd, 5th, 13th and 14th position (see the
curved arrows in (b)). Then we apply the swapping permutation σs (which might
change the value of Υ) (see (c)). Finally we permute the first and second half
again to obtain the permutation shown in (d).

function Υ by (18)) such that the result of all these steps is the permutation π � (see Figure
1).

By the above argument we can therefore decompose P
swap
I|Z2m= � (Υ (ΠI (z))) as follows:

P
swap
I|Z2m= � (Υ (ΠI (z))) =

∑
�
∈I2m

IΥ(Π � ( � ))P
swap
I

(i)

=
m∑

k=0

(
m
k

)

2m
· 1

|Jk|
∑

�
∈Jk

IΥ(Π � ( � ))

=

m∑

k=0

(
m
k

)

2m
· 1

|Jk|

|Sk|∑

j=1

∑
�
∈Jk,j

IΥ(Π � ( � ))

=

m∑

k=0

(
m
k

)

2m
· 1

|Jk|
∑

� ∈Sk

|Jk|
|Sk|

IΥ(Σ � ( � ))

=
1

2m

m∑

k=0

∑

� ∈Sk

IΥ(Σ � ( � ))

=
1

2m

∑

� ∈{0,1}m

IΥ(Σ � ( � )) ,
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where we used (20) in the second line, (21) in the fourth line and |Sk| =
(
m
k

)
in the fifth

line.

A.6 Proof of Algorithmic Luckiness Theorem 8

This subsection contains the proof of our main result for binary loss functions. The ideas
of the proof are similar to those used in the original luckiness framework. However, in
the present case we make use of general covering numbers which allows us to devise a
generalisation error bound for the agnostic case (Section A.7).

Proof In order to prove the theorem we bound the probability of training samples z ∈ Zm

such that

1. the prediction error of A (z) is greater than ε, i.e. J1 (z) ≡ Rl [A (z)] > ε

2. the training error of A (z) on z is zero, i.e. J2 (z) ≡ R̂l [A (z) ,z] = 0, and

3. the function ω
(
L (A,z) , l,m, δ

4 , 1
2m

)
is smaller than 2d, i.e. J3 (z) ≡

ω
(
L (A,z) , l,m, δ

4 , 1
2m

)
≤ 2d

by our preset value of δ. Using Lemma 22 and noticing that by assumption εm > 2 we have
that12

PZm (J1 (Z) ∧ J2 (Z) ∧ J3 (Z)) < 2 · PZ2m

(
J4 (Z) ∧ J2

(
Z[1:m]

)
∧ J3

(
Z[1:m]

))
︸ ︷︷ ︸

J(Z)

, (22)

where J4 (z) ≡ R̂l

[
A
(
z[1:m]

)
,z[(m+1):2m]

]
≥ ε

2 . We now exploit the ω–smallness of L by
considering the following proposition for z ∈ Z2m

S (z) ≡ |Ll (H� (L,z))| > ω

(
L
(
A,z[1:m]

)
, l,m,

δ

4
,

1

2m

)
.

Since for any double sample z ∈ Z2m, J (z) ≡ (J (z) ∧ S (z)) ∨
(
J (z) ∧ S (z)

)
, it follows

that

2 · PZ2m (J (Z)) = 2 · PZ2m (J (Z) ∧ S (Z)) + 2 · PZ2m

(
J (Z) ∧ S (Z)

)

≤ δ

2
+ 2 · PZ2m


J4 (Z) ∧ J2

(
Z[1:m]

)
︸ ︷︷ ︸

J42(Z)

∧J3

(
Z[1:m]

)
∧ S (Z)

︸ ︷︷ ︸
J3S

(Z)


 , (23)

where we used Definition 7. We now resort to a technique known as symmetrisation by
permutation (Kahane, 1968): Since we consider the product measure PZ2m we know that

12. Note that we consider double samples � ∈ Z2m on the right hand side of this inequality.
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any permutation of the double sample does not change the probability. Consequently, for
any measure PI over i ∈ I2m we have

PZ2m

(
J42 (Z) ∧ J3S (Z)

)
= EI

[
PZ2m|I=

�
(
J42 (Π � (Z)) ∧ J3S (Π � (Z))

)]

= EZ2m

[
PI|Z2m= �

(
J42 (ΠI (z)) ∧ J3S (ΠI (z))

)]
. (24)

For a fixed double sample z ∈ Z2m let us arrange all permutations parameterised by ij ∈ I2m

such that L
(
A,
(
Π �

j+1
(z)
)
[1:m]

)
≤ L

(
A,
(
Π �

j
(z)
)
[1:m]

)
for all j ∈ {1, . . . , (2m)!}. Then,

let
Hj (z) :=

{
A (Π �

k
(z))[1:m] | k ∈ {1, . . . , j}

}
⊆ YX .

Note that N
(

1
2m

,Ll (Hj+1 (z)) , ρ �
1

)
≥ N

(
1

2m
,Ll (Hj (z)) , ρ �

1

)
and let j∗ ∈ {1, . . . , (2m)!}

be such that

N

(
1

2m
,Ll (Hj∗+1 (z)) , ρ �

1

)
> 2d but N

(
1

2m
,Ll (Hj∗ (z)) , ρ �

1

)
≤ 2d .

Then J3S

(
Πij

(z)
)

is only true if j ≤ j∗. As a consequence, let Ĥ (z) be a minimal cover

of Hj∗ (z) at scale 1
2m

w.r.t. ρ �
1 , i.e. it contains a minimal set of hypotheses that incur all

different zero-one loss patterns achieved on the double sample z. Note that by definition

of j∗ we know that
∣∣∣Ĥ (z)

∣∣∣ ≤ 2d. Hence, whenever J42 (Π � (z)) ∧ J3S (Π � (z)) is true for a

permutation π � then

∃h ∈ Ĥ (z) :
(
R̂l

[
h, (Π � (z))[1:m]

]
= 0
)
∧
(
R̂l

[
h, (Π � (z))[(m+1):2m]

]
≥ ε

2

)
.

Consequently, we can use the union bound to obtain

PI|Z2m= �

(
J42 (ΠI (z)) ∧ J3S (ΠI (z))

)

≤ PI|Z2m= �

(
∃h ∈ Ĥ (z) :

(
R̂l

[
h, (ΠI (z))[1:m]

]
= 0
)
∧
(
R̂l

[
h, (ΠI (z))[(m+1):2m]

]
≥ ε

2

))

≤
∑

h∈
�
H( � )

PI|Z2m= �

((
R̂l

[
h, (ΠI (z))[1:m]

]
= 0
)
∧
(
R̂l

[
h, (ΠI (z))[(m+1):2m]

]
≥ ε

2

))
.

Now we will choose PI = P
swap
I

as given by (20). From Theorem 24 we obtain

P
swap
I|Z2m= �

(
J42 (ΠI (z)) ∧ J3S (ΠI (z))

)

≤
∑

h∈
�
H( � )

1

2m

∑

� ∈{0,1}m

I(
�
Rl[h,(Σ � ( � ))[1:m]]=0)∧(

�
Rl[h,(Σ � ( � ))[(m+1):2m]]≥

ε
2)

.

For each fixed h ∈ Ĥ (z) the maximum number of swappings that satisfy the requirement
stated (the argument to the indicator function) is given by 2m−mε

2 because whenever we
swap one of the at least mε

2 examples that incur a mistake into the first half of the double
sample we violate the condition of zero training error. Hence setting ε = 2

m

(
d + 2 + ln

(
1
δ

))
,

for any z ∈ Z2m,

P
swap
I|Z2m= � (J42 (ΠI (z))) ≤ 2d · 2−mε

2 = 2d · 2−m
2
· 2
m(d+2+log2( 1

δ )) =
δ

4
. (25)
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In summary, combining (22), (23), (24) and (25) we have shown that

PZm

(
(Rl [A (Z)] > ε) ∧

(
R̂l [A (Z) ,Z] = 0

)
∧
(

ω

(
L (A,Z) , l,m,

δ

4
,

1

2m

)
≤ 2d

))
< δ .

A.7 Proof of Algorithmic Luckiness Theorem 9

Lemma 25 Suppose we are given two vectors a ∈ R
2m and b ∈ R

2m such that

1

m

m∑

i=1

ai − ai+m > ε + 2δ and
1

2m

2m∑

i=1

|ai − bi| ≤ δ ,

for some positive numbers ε, δ ∈ R
+. Then

1

m

m∑

i=1

bi − bi+m > ε .

Proof The result follows by using x ≥ − |x| in the third line below

1

m

m∑

i=1

(bi − bi+m) =
1

m

m∑

i=1


bi − bi+m + ai − ai + ai+m − ai+m︸ ︷︷ ︸

=0




=
1

m

(
m∑

i=1

(ai − ai+m) +

(
m∑

i=1

(bi − ai)

)
+

(
m∑

i=1

(ai+m − bi+m)

))

≥ 1

m

m∑

i=1

(ai − ai+m) −
(

1

m

m∑

i=1

|bi − ai| +
1

m

m∑

i=1

|ai+m − bi+m|
)

=
1

m

m∑

i=1

(ai − ai+m)

︸ ︷︷ ︸
>ε+2δ

− 1

m

2m∑

i=1

|bi − ai|
︸ ︷︷ ︸

≤2δ

> ε .

We now prove the main theorem for real-valued function classes.

Proof In order to prove the theorem we bound the probability of training samples z ∈ Zm

such that

1. the prediction error of A (z) is more than ε greater than R̂l [A (z) ,z], i.e.

J1 (z) ≡ Rl [A (z)] − R̂l [A (z) ,z] > ε

2. the function ω
(
L (A,z) , l,m, δ

4 , τ
)

is smaller than 2d, i.e.

J2 (z) ≡ ω

(
L (A,z) , l,m,

δ

4
, τ

)
≤ 2d
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by our preset value of δ. Using Lemma 23 and noticing that by assumption ε2m > 2 we
have that

PZm (J1 (Z) ∧ J2 (Z)) < 2 · PZ2m

(
J3 (Z) ∧ J2

(
Z[1:m]

))
︸ ︷︷ ︸

J(Z)

, (26)

where
J3 (z) ≡ R̂l

[
A
(
z[1:m]

)
,z[(m+1):2m]

]
− R̂l

[
A
(
z[1:m]

)
,z[1:m]

]
>

ε

2
.

We now exploit the ω–smallness of L by considering the proposition for z ∈ Z2m

S (z) ≡ N (τ,Ll (H� (L,z)) , ρ�
1 ) > ω

(
L
(
A,z[1:m]

)
, l,m,

δ

4
, τ

)
.

Since for any double sample z ∈ Z2m we know J (z) ≡ (J (z) ∧ S (z)) ∨
(
J (z) ∧ S (z)

)
it

follows that

2 · PZ2m (J (Z)) = 2 · PZ2m (J (Z) ∧ S (Z)) + 2 · PZ2m

(
J (Z) ∧ S (Z)

)

≤ δ

2
+ 2 · PZ2m


J3 (Z) ∧ J2

(
Z[1:m]

)
∧ S (Z)

︸ ︷︷ ︸
J2S(Z)


 . (27)

where we used Definition 7. We again make use of symmetrisation by permutation (Kahane,
1968): Since we consider the product measure PZ2m we know that any permutation of the
double sample does not change the probability. Consequently, for any measure PI over
i ∈ I2m we have

PZ2m

(
J3 (Z) ∧ J2S (Z)

)
= EI

[
PZ2m|I=

�
(
J3 (Π � (Z)) ∧ J2S (Π � (Z))

)]

= EZ2m

[
PI|Z2m= �

(
J3 (ΠI (z)) ∧ J2S (ΠI (z))

)]
. (28)

For a fixed double sample z ∈ Z2m let us arrange all permutations parameterised by ij ∈ I2m

such that L
(
A,
(
Π �

j+1
(z)
)
[1:m]

)
≤ L

(
A,
(
Π �

j
(z)
)
[1:m]

)
for all j ∈ {1, . . . , (2m)!}. Let

Hj (z) :=
{

A (Π �
k
(z))[1:m] | k ∈ {1, . . . , j}

}
⊆ YX .

Note that N (τ,Ll (Hj+1 (z)) , ρ �
1 ) ≥ N (τ,Ll (Hj (z)) , ρ�

1 ). Let j∗ be such that

N (τ,Ll (Hj∗+1 (z)) , ρ�
1 ) > 2d but N (τ,Ll (Hj∗ (z)) , ρ �

1 ) ≤ 2d .

Then J2S

(
Π �

j
(z)
)

is true only if j ≤ j∗. Let Ĥ (z) be a minimal cover of Hj∗ (z) at scale
τ w.r.t. the metric

ρ �
(
h, h̃

)
:=

1

2m

∑

(xi,yi)∈ �

∣∣∣l (h (xi) , yi) − l
(
h̃ (xi) , yi

)∣∣∣ ,

that is for every h ∈ Hj∗ (z) there exists a ĥ ∈ Ĥ (z) such that

1

2m

∑

(xi,yi)∈ �

∣∣∣l (h (xi) , yi) − l
(
ĥ (xi) , yi

)∣∣∣ ≤ τ . (29)
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Whenever J2S (z) is true we know that
∣∣∣Ĥ (z)

∣∣∣ ≤ 2d. Hence, whenever J3 (Π � (z)) ∧
J2S (Π � (z)) is true for a permutation π � then

∃h ∈ Ĥ (z) : R̂l

[
h, (Π � (z))[(m+1):2m]

]
− R̂l

[
h, (Π � (z))[1:m]

]
>

ε

2
− 2τ ,

using (29) and Lemma 25. Thus we can use the union bound to obtain

PI|Z2m= � (J3 (ΠI (z)))

≤ PI|Z2m= �

(
∃h ∈ Ĥ (z) :

(
R̂l

[
h, (ΠI (z))[(m+1):2m]

]
− R̂l

[
h, (ΠI (z))[1:m]

])
>

ε

2
− 2τ

)

≤
∑

h∈
�
H( � )

PI|Z2m= �

((
R̂l

[
h, (ΠI (z))[(m+1):2m]

]
− R̂l

[
h, (ΠI (z))[1:m]

])
>

ε

2
− 2τ

)

Now we will choose PI = P
swap
I

as given by (20). From Theorem 24 we obtain that
P

swap
I|Z2m= � (J3 (ΠI (z))) is less than or equal to

∑

h∈
�
H( � )

1

2m

∑

� ∈{0,1}m

I(
�
Rl[h,(zσ � (m+1),...,zσ � (2m))]−

�
Rl[h,(zσ � (1),...,zσ � (m))])> ε

2
−2τ

︸ ︷︷ ︸
χ

.

For a fixed h ∈ Ĥ (z) consider the m random variables

Wi := l
(
h
(
xσS(i+m)

)
, yσS(i+m)

)
− l
(
h
(
xσS(i)

)
, yσS(i)

)
, i = 1, . . . ,m ,

which are mutually independent with mean zero. Since Wi ∈ [−1,+1] we can use the
one-sided Hoeffding’s inequality (Hoeffding, 1963) to obtain

χ = PWm

(
1

m

m∑

i=1

Wi >
ε

2
− 2τ

)
< exp

(
−m

(
ε
2 − 2τ

)2

2

)
< 2−

m(ε−4τ)2

8 .

Hence setting ε =
√

8
m

(
d + 2 + log2

(
1
δ

))
+ 4τ , for any z ∈ Z2m,

P
swap
I|Z2m= � (J3 (ΠI (z))) ≤ 2d · 2−

m(ε−4τ)2

8 =
δ

4
. (30)

In summary, combining (26), (27), (28) and (30) we have shown that

PZm

((
Rl [A (Z)] − R̂l [A (Z) ,Z] > ε

)
∧
(

ω

(
L (A,Z) , l,m,

δ

4
, τ

)
≤ 2d

))
< δ .
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A.8 Auxiliary Results for the Proof of Theorem 17

In this section we present two theorems which will be needed in the proof of Theorem
17. The first theorem together with the first corollary is a refinement of a result proven
by Makovoz (1996) which bounds the approximation error of sparse linear combination of
functions. We will present the proof in terms of elements of `N

2 , where N may be infinite
(simply in order to align the notation with that used elsewhere in the present paper).
The most appealing feature of this result is that the approximation error is related to the
geometrical configuration of the basis vectors. To this end, we need the notion of entropy
numbers.

Definition 26 (Entropy numbers) Given a subset X of K ⊆ `N
2 , the n–th entropy num-

ber εn (X) of X is defined as

εn (X) := inf {ε > 0 |N (ε,X, ‖· − ·‖) ≤ n} .

In other words, εn (X) is the smallest radius such that X can be covered by not more than
n balls.

Theorem 27 Let X := {x1,x2, . . . ,xm} ⊆ K be an arbitrary sequence of elements of
K ⊆ `N

2 . For every w ∈ K of the form

w =

m∑

i=1

αixi , α ≥ 0 ,

and for every even n ∈ N, n ≤ m, there is a ŵ =
∑m

i=1 α̂ixi with at most n non-zero
coefficients α̂i > 0 for which

‖w − ŵ‖ ≤
√

2εn
2

(X) · ‖α‖1√
n

.

The proof follows Makovoz’ proof closely, but uses a more refined argument in order to
improve on the constant.

Proof Lets define p := n
2 ⇔ n = 2p. First we notice that we only need to consider the

case that ‖α‖1 = 1. If it is not then for every even n ∈ N we can approximate 1
‖ � ‖1

w with

an n–sparse vector ŵ to accuracy εp (X) /
√

p, i.e.

∥∥∥∥
1

‖α‖1

w − ŵ

∥∥∥∥ ≤ εp (X)√
p

⇔ ‖w − ‖α‖1 · ŵ‖ ≤ εp (X) · ‖α‖1√
p

.

In the construction below we will allocate a fraction of the n terms available to us in the
approximation ŵ. By definition, for a given even n and some ε > εp (X), we can find p
disjoint and nonempty subsets X1, . . . ,Xp such that Xj is covered w.r.t. ‖· − ·‖ at radius ε,
that is,

∀j ∈ {1, . . . , p} : ∃cj ∈ K : ∀x̃ ∈ Xj : ‖cj − x̃‖ ≤ ε (31)
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and
⋃p

j=1 Xj = X. Hence, we can decompose the set {1, . . . ,m} as {1, . . . ,m} =
⋃p

j=1 Ij

where the Ij ⊂ {1, . . . ,m} are all disjoint and nonempty and the sets Xj are defined by

Xj := {xi | i ∈ Ij } .

Let wj :=
∑

i∈Ij
αixi, and Cj :=

∑
i∈Ij

αi. We will approximate wj by linear combinations

ŵj =
∑

i∈Ij
α̂ixi with a small number of non-zero α̂i, respectively. The proof uses the

probabilistic method (Alon et al., 1991). To this end, we assume that wj is always approx-
imated by lj := dpCje many randomly drawn points from the set Ij . The effect of such an
allocation is that index sets Ij which contribute largely (in terms of the coefficients αi) to
the linear combination w =

∑p
j=1

∑
i∈Ij

αixi are used more often in the random n–sparse

approximation ŵ. Note that

l :=

p∑

j=1

lj ≤
p∑

j=1

(pCj + 1) = p




p∑

j=1

Cj


+ p = 2p = n .

Within each subset Ij we also need to select which of the |Ij| many xi, i ∈ Ij, are used.
Hence, we define p groups of lj , j ∈ {1, . . . , p}, iid random variables K1, . . . ,Kp taking values

in I l1
1 , . . . , I

lp
p and having the probability distributions

∀j ∈ {1, . . . , p} : ∀µ ∈ {1, . . . , lj} : ∀i ∈ Ij : PKj,µ
(Kj,µ = i) :=

αi

Cj
.

In a manner similar to the allocation policy for subsets Ij we ensure that points xi with
large coefficients αi are more likely to appear in the n–sparse approximation ŵ. Thus, for
any given sample (k1, . . . ,kp) ∼ PK1 · · ·PKp we define the n–sparse approximation ŵ by

ŵ (k1, . . . ,kp) :=

p∑

j=1

ŵj (kj) , ŵj (kj) :=
Cj

lj

lj∑

µ=1

xkj,µ
.

First we observe that for all j ∈ {1, . . . , p}, EKj
[ŵj (Kj)] = wj because,

EKj
[ŵj (Kj)] = EKj


Cj

lj

lj∑

µ=1

xKj,µ




=
Cj

lj

lj∑

µ=1

EKj,µ

[
xKj,µ

]

=
Cj

lj

lj∑

µ=1

∑

ν∈Ij

αν

Cj
xν

=
1

lj

lj∑

µ=1

wj = wj , (32)
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where the second line is a consequence of the mutual of the independence Kj,µ, µ ∈
{1, . . . , lj}. This implies that EK1···Kp

[ŵ (K1, . . . ,Kp)] = w. Note that for all j ∈ {1, . . . , p},

varKj
(ŵµ (Kj)) = varKj


Cj

lj

lj∑

µ=1

xKj,µ




=
C2

j

l2j

lj∑

µ=1

varKj,µ

(
xKj,µ

)
︸ ︷︷ ︸

≤ε2

≤
C2

j ε2

lj
≤ Cjε

2

n
, (33)

because by construction xKj
only takes values in Xj which has by definition a radius13 of

ε. Combining (33) together with and (32), we can now bound the expected approximation
error from above as follows

EK1···Kp ‖ŵ (K1, . . . ,Kp) −w‖2 = varK1···Kp (ŵ (K1, . . . ,Kp))

= varK1···Kp




p∑

j=1

ŵj (Kj)




=

p∑

j=1

varKj
(ŵj (Kj))

≤
p∑

j=1

Cjε
2

p
=

ε2

p
.

Since for any random draw k1, . . . ,kp, ŵ (k1, . . . ,kp) is l–sparse, l ≤ n, there must exists
at least one weight vector ŵ for which the approximation error is less than ε/

√
p. The

theorem is proved.

Corollary 28 Let X := {x1,x2, . . . ,xm} ⊆ K be an arbitrary sequence of elements of
K ⊆ `N

2 . For every w ∈ K of the form

w =

m∑

i=1

αixi , ‖α‖1 < ∞ , (34)

13. Note that by definition of variance and (31),

varKj,µ

	
xKj,µ � = varKj,µ

	
xKj,µ

− cj �
= EKj,µ

����
xKj,µ

− cj

�� 2 �
−

��
EKj,µ

� xKj,µ
− cj � �� 2

≤ EKj,µ

� ��
xKj,µ

− cj

�� 2 �
= EKj,µ � ε2 � ≤ ε

2
.
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and for every n = 4j, j ∈ N, n ≤ m, there is a ŵ =
∑m

i=1 α̂ixi with at most n non-zero
coefficients α̂i for which

‖w − ŵ‖ ≤
2εn

4
(X) · ‖α‖1√

n
. (35)

Proof Define the two subsets I+ := {i ∈ {1, . . . ,m} | αi > 0} and I− :=
{i ∈ {1, . . . ,m} | αi < 0}, the two vectors w± :=

∑
i∈I±

|αi|xi, the two vectors α± :=
(ai)i∈I±

, and the two sets X± := {xi | i ∈ I± }. For any number j ∈ N, by virtue of Theo-
rem 27 we know that there exists a 2j–sparse vector ŵ± such that

‖w± − ŵ±‖ ≤ εj (X±) ‖α±‖1√
j

.

Note that εj (X±) ≤ εj (X) because X± ⊆ X. If we define ŵ := w+−w− then by application
of the the triangle inequality in the third line

‖w − ŵ‖ = ‖(w+ −w−) − (ŵ+ − ŵ−)‖
= ‖(w+ − ŵ+) − (w− − ŵ−)‖
≤ ‖w+ − ŵ+‖ + ‖w− − ŵ−‖

≤ εj (X+) ‖α+‖1 + εj (X−) ‖α−‖1√
j

≤ εj (X) (‖α+‖1 + ‖α−‖1)√
j

=
εj (X) ‖α‖1√

j
.

Noticing that ŵ is a 4j = n–sparse approximation of w proves the corollary.

Corollary 29 Suppose we are given a training sample z = (x,y) ∈ (X × {−1,+1})m, a
feature map φ : X → K ⊆ `N

2 and a vector α ∈ R
m such that w =

∑m
i=1 αiφ (xi) has a

positive margin, Γ � (w) ≥ 0. If the natural number n = 4j, j ∈ N, satisfies

n >
4 · ε2n

4
({φ (x1) , . . . ,φ (xm)}) · ‖α‖2

1

Γ2
� (w)

,

then there exists a weight vector ŵ with a representation

ŵ =
m∑

i=1

α̂iφ (xi)

such that at most n of the coefficients α̂i are non-zero and ‖w − ŵ‖2 ≤ Γ2
� (w).

Proof Observe that with the assumed choice of n we have

4 · ε2n
4

({φ (x1) , . . . ,φ (xm)}) · ‖α‖2
1

n
< Γ2

� (w)
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But Corollary 28 implies that for any n there exists ŵ =
∑m

i=1 α̂iφ (xi) with no more than
n non-zero coefficients α̂i such that

‖w − ŵ‖2 ≤
4 · ε2n

4
({φ (x1) , . . . ,φ (xm)}) · ‖α‖2

1

n
< Γ2

� (w) .

Our second theorem lower bounds the inner product of two normalised vectors if we only
know the distance between the two vectors, one of which is already normalised. More
formally, this reads as follows.

Theorem 30 Suppose ‖w‖ = 1 and ‖w − ŵ‖2 ≤ c2, c < 1. Then

〈
w,

ŵ

‖ŵ‖

〉
≥
√

1 − c2 .

Proof With no loss of generality consider the subspace spanned by w and ŵ. Let
θ := ∠(w, ŵ). The worst ŵ is such that the line ` passing through the origin and ŵ
is tangential (at the point denoted v) to the circle of radius c centred at w. The line
(v,w) ⊥ ` ⇒ sin (θ) ≤ c ⇒ 〈w, ŵ/ ‖ŵ‖〉 = cos (θ) ≥

√
1 − c2.
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