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Rademacher Averages

Lecturer: Shivani Agarwal Scribe: Shivani Agarwal

1 Introduction

So far we have seen how to obtain generalization error bounds for learning algorithms that pick a function
from a function class of limited capacity or complexity, where the complexity of the class is measured
using the growth function or VC-dimension in the binary case, and using covering numbers or the fat-
shattering dimension in the real-valued case. These complexity measures however do not take into account
the distribution of the data; regardless of whether the distribution generating the data is ‘easy’ or ‘hard’ to
learn with respect to, one gets the same bound on the difference between the expected (generalization) error
and empirical (sample) error. Although we saw that the results we obtained could be refined to give bounds
in terms of the VC-entropy or the expected covering numbers, both of which are distribution-dependent
quantities, estimating these quantities can be difficult in practice.1

In this lecture we will see an alternative notion of the capacity or complexity of a function class, namely the
Rademacher averages, which are defined with respect to the distribution generating the data. We will see
that the Rademacher averages of a function class can be estimated reliably from data, and that they yield
generalization error bounds in terms of data-dependent quantities that can often be estimated or bounded
in practice. In order to derive these results, we will need a more powerful concentration inequality than
what we have used so far; in particular, we will use McDiarmid’s inequality, which generalizes Hoeffding’s
inequality and bounds the probability of a large deviation for any function of independent random variables
for which a change in a single random variable has bounded effect on the function value.

2 McDiarmid’s Inequality

Theorem 2.1 (McDiarmid’s inequality, also known as bounded differences inequality or Hoeffding-Azuma
inequality; McDiarmid, 1989). Let X1, . . . , Xn be independent random variables, with Xi taking values in
some set Ai. Let φ : A1 × . . .×An→R be such that ∃ c1, . . . , cn > 0 such that for all i,

sup
x1,...,xn,x′

i

∣∣∣φ(x1, . . . , xi, . . . , xn)− φ(x1, . . . , x
′
i, . . . , xn)

∣∣∣ ≤ ci .

Then for any ε > 0,

P
(
φ(X1, . . . , Xn)−E

[
φ(X1, . . . , Xn)

]
≥ ε
)
≤ e−2ε2/

∑n
i=1 c

2
i .

and
P
(
φ(X1, . . . , Xn)−E

[
φ(X1, . . . , Xn)

]
≤ −ε

)
≤ e−2ε2/

∑n
i=1 c

2
i .

Note that Hoeffding’s inequality follows as a special case of the above with Ai = [ai, bi], φ(x1, . . . , xm) =∑m
i=1 xi, and ci = bi − ai (clearly, changing xi can change the sum by at most bi − ai).

1We note that it is possible to show concentration results for certain empirical quantities related to the VC-entropy, which
can then be used as empirical estimates for the VC-entropy; however in most cases, obtaining tight estimates or bounds for
these empirical quantities is still difficult.
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2 Rademacher Averages

3 Rademacher Averages

Definition. Let F ⊆ RX . Let xm1 ∈ Xm. Then the empirical Rademacher average (or empirical Rademacher
complexity) of F w.r.t. xm1 is defined as2

Rxm
1

(F) = Er∈{±1}m

[
sup
f∈F

1
m

m∑
i=1

rif(xi)

]
.

If µ is a probability distribution on X , then the (expected) Rademacher averages (or Rademacher complex-
ities) of F w.r.t. µ are defined as3

Rm,µ(F) = Exm
1 ∼µm

[
Rxm

1
(F)

]
.

The Rademacher averages can be viewed as measuring the extent to which, on average, functions in F (or
vectors in F|xm

1
) can be correlated with a random sign vector. The Rademacher average should be compared

with the VC-entropy or the expected covering numbers, which also provide a distribution-dependent measure
of the complexity of a function class. The following result shows that the Rademacher averages can be
estimated reliably from the empirical version on a single data sample:

Lemma 3.1. Let F ⊆ [a, b]X for some a ≤ b. Let µ be any probability distribution on X . For any ε > 0,

Pxm
1 ∼µm

[∣∣∣Rxm
1

(F)−Rm,µ(F)
∣∣∣ ≥ ε] ≤ 2 e−2mε2/(b−a)2 .

Proof. Define φ : Xm→R as φ(x1, . . . , xm) = Rxm
1

(F). Then clearly, Exm
1 ∼µm [φ(x1, . . . , xm)] = Rm,µ(F).

Moreover, for any k ∈ [m] and any x1, . . . , xm, x
′
k ∈ X , we have∣∣∣φ(x1, . . . , xk, . . . , xm)− φ(x1, . . . , x

′
k, . . . , xm)

∣∣∣ (1)

=
∣∣∣Rxm

1
(F)−R(x1,...,x′

k,...,xm)(F)
∣∣∣ (2)

=

∣∣∣∣∣∣Er∈{±1}m

sup
f∈F

1
m

m∑
i=1

rif(xi)− sup
f∈F

 1
m

∑
i 6=k

rif(xi) +
1
m
rkf(x′k)

∣∣∣∣∣∣ (3)

≤ b− a
m

(since for any r, the change in the sum for any fixed f ∈ F is at most b−a
m ) . (4)

The result follows by McDiarmid’s inequality.

In fact, we can show something stronger: the Rademacher averages can be estimated reliably from a single
sample xm1 ∼ µm and a single instantiation of the random vector r ∈ {±1}m!

Lemma 3.2. Let F ⊆ [a, b]X for some a ≤ b. Let µ be any probability distribution on X . For any ε > 0,

Pxm
1 ∼µm,r∈{±1}m

[∣∣∣∣∣sup
f∈F

1
m

m∑
i=1

rif(xi)−Rm,µ(F)

∣∣∣∣∣ ≥ ε
]
≤ 2 e−2mε2/((b−a)2+4 max(a2,b2)) .

Proof. We will use McDiarmid’s inequality again. Define now φ : Xm×{±1}m→R as φ(x1, . . . , xm, r1, . . . , rm) =
supf∈F

1
m

∑m
i=1 rif(xi). Clearly, Exm

1 ∼µm,r∈{±1}m [φ(x1, . . . , xm)] = Rm,µ(F). Now fix any x1, . . . , xm ∈ X

2From here on, we will abbreviate the set {−1, 1} as {±1}.
3When the distribution µ is understood from context, the Rademacher averages Rm,µ(F) are often written simply as Rm(F).

Similarly, when xm1 is understood to be random, the empirical Rademacher average Rxm
1

(F), which then becomes a random

variable, is often written as R̂m(F). The notation we use here makes the dependences on µ and xm1 explicit.



Rademacher Averages 3

and r1, . . . , rk ∈ {±1}. For any k ∈ [m] and x′k ∈ X , we have∣∣∣φ(x1, . . . , xk, . . . , xm, r1, . . . , rm)− φ(x1, . . . , x
′
k, . . . , xm, r1, . . . , rm)

∣∣∣ (5)

=

∣∣∣∣∣∣sup
f∈F

1
m

m∑
i=1

rif(xi)− sup
f∈F

 1
m

∑
i6=k

rif(xi) +
1
m
rkf(x′k)

∣∣∣∣∣∣ (6)

≤ b− a
m

as before. (7)

Moreover, for any k ∈ [m] and r′k ∈ {±1}, we have∣∣∣φ(x1, . . . , xm, r1, . . . , rk, . . . , rm)− φ(x1, . . . , xm, r1, . . . , r
′
k, . . . , rm)

∣∣∣ (8)

=

∣∣∣∣∣∣sup
f∈F

1
m

m∑
i=1

rif(xi)− sup
f∈F

 1
m

∑
i6=k

rif(xi) +
1
m
r′kf(xk)

∣∣∣∣∣∣ (9)

≤ 2 max(|a|, |b|)
m

. (10)

The result follows by McDiarmid’s inequality.

Of course, the estimation of Rm,µ(F) using supf∈F
1
m

∑m
i=1 rif(xi) still involves solving an optimization

problem over f ∈ F , which can be intractable. We will say more about this in the next section.

4 Generalization Error Bounds in Terms of Rademacher Averages

We have the following one-sided uniform bound on the generalization error of functions in F in terms of the
Rademacher averages of the loss function class `F :

Theorem 4.1 (Bartlett and Mendelson, 2002; Koltchinkskii and Panchenko, 2002). Let Y, Ŷ ⊆ R, and let
F ⊆ ŶX . Let ` : Y × Ŷ→[0, B]. Let D be any probability distribution on X ×Y. Let 0 < δ ≤ 1. Then with
probability at least 1− δ (over S ∼ Dm), all functions f ∈ F satisfy

er`D[f ] ≤ er`S [f ] + 2Rm,D(`F ) +B

√
ln( 1

δ )
2m

.

Proof. Define φ : (X × Y)m→R as φ(S) = supf∈F
(

er`D[f ] − er`S [f ]
)

for all S ∈ (X × Y)m. Then clearly,
a change in a single example (xi, yi) in S can change φ(S) by at most B/m. Therefore by McDiarmid’s
inequality, we have for any ε > 0,

PS∼Dm

(
sup
f∈F

(
er`D[f ]− er`S [f ]

)
≥ ES∼Dm

[
sup
f∈F

(
er`D[f ]− er`S [f ]

)]
+ ε

)
≤ e−2mε2/B2

.

This gives with probability at least 1− δ over S ∼ Dm,

sup
f∈F

(
er`D[f ]− er`S [f ]

)
≤ ES∼Dm

[
sup
f∈F

(
er`D[f ]− er`S [f ]

)]
+B

√
ln( 1

δ )
2m

.

We now bound the expectation using a symmetrization trick to deal with er`D[f ], similar to what we have
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seen in previous uniform convergence proofs. We have,

ES∼Dm

[
sup
f∈F

(
er`D[f ]− er`S [f ]

)]
(11)

= ES∼Dm

[
sup
f∈F

(
1
m

m∑
i=1

(
E(x̃i,ỹi)∼D [`f (x̃i, ỹi)]− `f (xi, yi)

))]
(12)

= ES∼Dm

[
sup
f∈F

(
ES̃∼Dm

[
1
m

m∑
i=1

(
`f (x̃i, ỹi)− `f (xi, yi)

)])]
(13)

≤ E(S,S̃)∼Dm×Dm

[
sup
f∈F

1
m

m∑
i=1

(
`f (x̃i, ỹi)− `f (xi, yi)

)]
(by Jensen’s inequality) (14)

= E(S,S̃)∼Dm×Dm,r∈{±1}m

[
sup
f∈F

1
m

m∑
i=1

ri

(
`f (x̃i, ỹi)− `f (xi, yi)

)]
(15)

≤ 2 ES∼Dm,r∈{±1}m

[
sup
f∈F

1
m

m∑
i=1

ri`f (xi, yi)

]
(16)

= 2Rm,D(`F ) . (17)

This completes the proof.

4.1 Binary-Valued Function Classes

In the case of binary-valued functions and zero-one loss, the Rademacher averages of the loss function class
are actually equal (upto a constant factor) to the Rademacher averages of the function class itself:

Lemma 4.2. Let H ⊆ {±1}X . Let ` = `0-1. Let D be any distribution on X × {±1} and let µ be the
marginal of D on X . Then

Rm,D(`H) =
1
2
Rm,µ(H) .

Proof. We have

Rm,D(`H) = ES∼Dm,r∈{±}m

[
sup
h∈H

1
m

m∑
i=1

ri1(h(xi) 6= yi)

]
(18)

= ES∼Dm,r∈{±}m

[
sup
h∈H

1
m

m∑
i=1

ri
1− yih(xi)

2

]
(19)

= ES∼Dm,r∈{±}m

[
1
m

m∑
i=1

ri
2

+ sup
h∈H

1
m

m∑
i=1

(−riyih(xi))
2

]
(20)

=
1
2
ES∼Dm,r∈{±}m

[
sup
h∈H

1
m

m∑
i=1

rih(xi)

]
(21)

=
1
2
Rm,µ(H) , (22)

where the second equality makes use of the fact that yi, h(xi) ∈ {±1}, and the fourth equality makes use of
the fact that the distribution of −riyi is the same as that of ri.

Corollary 4.3. Let H ⊆ {±1}X . Let D be any probability distribution on X × {±1}, with marginal µ on
X . If hS is selected from H, then for any 0 < δ ≤ 1, with probability at least 1− δ (over S ∼ Dm),

er0-1D [hS ] ≤ er0-1S [hS ] +Rm,µ(H) +

√
ln( 1

δ )
2m

. (23)
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Proof. Follows directly from Theorem 4.1 and Lemma 4.2, observing that 0 ≤ `0-1(y, ŷ) ≤ 1 and taking
B = 1.

We can also combine this with the concentration results for the empirical estimates of Rademacher averages
to get the following results that involve data-dependent complexity measures:

Corollary 4.4. Let H ⊆ {±1}X . Let D be any probability distribution on X × {±1}, with marginal µ on
X . If hS is selected from H, then for any 0 < δ ≤ 1, with probability at least 1− δ (over S ∼ Dm),

er0-1D [hS ] ≤ er0-1S [hS ] +Rxm
1

(H) + 3

√
ln( 2

δ )
2m

. (24)

Proof. Follows by combining the results of Corollary 4.3 and Lemma 3.1 (setting each to hold with probability
1−δ/2), observing we need only one side of Lemma 3.1 (allows us to remove a factor of 2 from that result).

Corollary 4.5. Let H ⊆ {±1}X . Let D be any probability distribution on X ×{±1}, with marginal µ on X .
If hS is selected from H, then for any 0 < δ ≤ 1, with probability at least 1− δ (over S ∼ Dm, r ∈ {±1}m),

er0-1D [hS ] ≤ er0-1S [hS ] +

(
sup
h∈H

1
m

m∑
i=1

rih(xi)

)
+ (1 + 2

√
2)

√
ln( 2

δ )
2m

. (25)

Proof. Follows by combining the results of Corollary 4.3 and Lemma 3.2 (setting each to hold with probability
1− δ/2), observing we need only one side of Lemma 3.2 (allows to remove a factor of 2 from that result).

For binary-valued function classes, we also have the following result which upper bounds the Rademacher
averages in terms of the VC-entropy (and therefore the growth function), implying that bounds in terms of
these averages can be tighter than those using the VC-entropy/growth function:4

Lemma 4.6. Let H ⊆ {±1}X . Let µ be any probability distribution on X . Then

Rm,µ(H) ≤
√

(2 ln 2)VC-entropyH,µ(m)
m

≤
√

2 ln ΠH(m)
m

.

4.2 Real-Valued Function Classes

For general real-valued function classes and ‘normalized’ Lipschitz losses, we have the following relation
between the Rademacher averages of the loss function class and those of the function class itself:5

Lemma 4.7. Let Y, Ŷ ⊆ R and F ⊆ ŶX . Let ` : Y × Ŷ→[0,∞) be such that `(y, 0) = 0 for all y ∈ Y
and `(y, ŷ) is L-Lipschitz in its second argument for some L > 0. Let D be any probability distribution on
X × Y, and let µ be the marginal of D on X . Then

Rm,D(`F ) ≤ LRm,µ(F) .

The loss functions we have studied do not usually satisfy the constraint `(y, 0) = 0 ∀ y. However we can
obtain a result similar to that of Theorem 4.1 in terms of the loss function class corresponding to a shifted
loss ˜̀(y, ŷ) = `(y, ŷ)− `(y, 0) which does satisfy the constraint:

Theorem 4.8. (Bartlett and Mendelson, 2002) Let Y, Ŷ ⊆ R, and let F ⊆ ŶX . Let ` : Y × Ŷ→[0, B]. Let
D be any probability distribution on X × Y. Let 0 < δ ≤ 1. Then with probability at least 1 − δ (over
S ∼ Dm), all functions f ∈ F satisfy

er`D[f ] ≤ er`S [f ] + 2Rm,D(˜̀F ) + 2B

√
ln( 2

δ )
2m

,

where ˜̀(y, ŷ) = `(y, ŷ)− `(y, 0).
4Proof via Massart’s finite class lemma.
5Proof via Ledoux-Talagrand contraction inequality.
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Proof. Note that we can write

sup
f∈F

(
er`D[f ]− er`S [f ]

)
= sup

f∈F

(
er˜̀
D[f ]− er˜̀

S [f ]
)

+

(
E(x,y)∼D[`(y, 0)]− 1

m

m∑
i=1

`(yi, 0)

)
. (26)

The first term can be bounded using the same argument as in Theorem 4.1 to get with probability at least
1− δ/2 (over S ∼ Dm):

sup
f∈F

(
er˜̀
D[f ]− er˜̀

S [f ]
)
≤ 2Rm,D(˜̀F ) +B

√
ln( 2

δ )
2m

. (27)

The second term can be bounded using Hoeffding’s (or McDiarmid’s) inequality to get with probability at
least 1− δ/2 (over S ∼ Dm):

E(x,y)∼D[`(y, 0)]− 1
m

m∑
i=1

`(yi, 0) ≤ B

√
ln( 2

δ )
2m

. (28)

Combining the two bounds gives the desired result.

Corollary 4.9. Let Y, Ŷ ⊆ R, and let F ⊆ ŶX . Let ` : Y × Ŷ→[0, B] be such that `(y, ŷ) is L-Lipschitz in
its second argument for some L > 0. Let D be any probability distribution on X × Y, with marginal µ on
X . If fS is selected from F , then for any 0 < δ ≤ 1, with probability at least 1− δ (over S ∼ Dm),

er`D[fS ] ≤ er`S [fS ] + 2LRm,µ(F) + 2B

√
ln( 2

δ )
2m

.

Proof. Follows directly from Theorem 4.8 and Lemma 4.7, observing that if ` is L-Lipschitz, then so is ˜̀.

Again, we can combine this with the concentration results for the empirical estimates of Rademacher averages
to get results involving data-dependent complexity measures, for example:

Corollary 4.10. Let Y ⊆ R, and let F ⊆ [a, b]X for some a ≤ b. Let ` : Y× [a, b]→[0, B] be such that `(y, ŷ)
is L-Lipschitz in its second argument for some L > 0. Let D be any probability distribution on X ×Y, with
marginal µ on X . If fS is selected from F , then for any 0 < δ ≤ 1, with probability at least 1 − δ (over
S ∼ Dm),

er`D[fS ] ≤ er`S [fS ] + 2LRxm
1

(F) + 2B

√
ln( 4

δ )
2m

+ (b− a)

√
ln( 2

δ )
2m

. (29)

Proof. Follows by combining the results of Corollary 4.9 and Lemma 3.1 (setting each to hold with probability
1− δ/2), observing we need only one side of Lemma 3.1 as before.

4.3 Computation of (Estimates of) Rademacher Averages

As noted above, the computation of the empirical estimates of Rademacher averages still involves solving
an optimization problem over the function class. In the case of binary classification, for H ⊆ {±1}X ,
the computation of the estimate suph∈H

1
m

∑m
i=1 rih(xi) (used in Lemma 3.2 and Corollary 4.5) involves

minimizing the empirical zero-one loss on a sample consisting of the points xi labeled with ri ∈ {±1}:

sup
h∈H

1
m

m∑
i=1

rih(xi) = − inf
h∈H

(
1
m

m∑
i=1

−rih(xi)

)
(30)

= − inf
h∈H

(
1
m

m∑
i=1

1− rih(xi)
2

· 2− 1

)
(31)

= 1− 2 inf
h∈H

(
1
m

m∑
i=1

1(h(xi) 6= ri)

)
. (32)
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For simple function classes H, this may be tractable; however, as we have noted before, for many function
classes of interest, this optimization problem is NP-hard. One possibility then is to obtain an approximate
solution, e.g. using the same learning algorithm being used for the classification task; this will not normally
lead to an exact bound, but could be used to obtain an approximate bound.

In general, if the function class F ⊆ RX of interest can be viewed as being appropriately composed of
some simpler function classes, one can make use of some structural results/composition theorems that allow
one to bound the Rademacher averages of the final class in terms of those for the simpler classes; see for
example [1] for such results. As an example of a function class for which the empirical Rademacher averages
can be bounded directly, let X ⊆ Rn, and consider the class of linear functions with bounded-norm weight
vectors: F = {f : X→R | f(x) = w · x for some w ∈ Rn, ‖w‖2 ≤W}. For this class, we have for any
xm1 = (x1 . . . ,xm) ∈ Xm and r ∈ {±1}m,

sup
f∈F

1
m

m∑
i=1

rif(xi) = sup
w:‖w‖2≤W

(
1
m

m∑
i=1

rixi

)
·w (33)

≤ W

∥∥∥∥∥ 1
m

m∑
i=1

rixi

∥∥∥∥∥
2

(by Cauchy-Schwarz inequality) (34)

=
W

m

√√√√ m∑
i=1

m∑
j=1

rirj(xi · xj) . (35)

This further gives

Rxm
1

(F) ≤ W

m
Er∈{±1}m

√√√√ m∑
i=1

m∑
j=1

rirj(xi · xj)

 (36)

≤ W

m

√√√√√Er∈{±1}m

 m∑
i=1

m∑
j=1

rirj(xi · xj)

 (by Jensen’s inequality) (37)

=
W

m

√√√√ m∑
i=1

‖xi‖22 . (38)

The same technique can also be used to bound the empirical Rademacher averages of classes of bounded-
norm functions in a reproducing kernel Hilbert space (RKHS), as used by SVMs when learning a kernel-based
classifier. We will discuss RKHSs in more detail in the next lecture.

5 Maximum Discrepancy and Gaussian Complexities

One can also define other measures of the complexity or capacity of a function class that can be estimated
reliably from data. Two such measures are the Gaussian averages (or Gaussian complexities), which are
defined similarly to the Rademacher averages except that the Rademacher random variables ri ∈ {±1} are
replaced with Gaussian random variables gi ∼ N (0, 1), and the maximum discrepancy, which measures the
maximum difference between the average values of a function in the class on two halves of a sample:

Dxm
1

(F) = sup
f∈F

 2
m

m/2∑
i=1

f(xi)−
2
m

m∑
i=m/2+1

f(xi)

 (39)

Dm,µ(F) = Exm
1 ∼µm

[
Dxm

1
(F)

]
. (40)

Both these measures are closely related to the Rademacher averages and can be used to obtain similar
generalization error bounds; see for example [1] for more details.6

6Note that the Rademacher and Gaussian averages are defined slightly differently in [1] (difference of a factor of 2 and an
absolute value in the definitions); the differences are not important in deriving the results we have discussed (the definitions we
have used are the ones more commonly used in the literature now).
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6 Next Lecture

In the next lecture we will see a different technique for bounding the generalization error of a learned
function, which will involve stability properties of the learning algorithm rather than complexity measures of
the function class searched by the algorithm; in particular, we will depart from the uniform bounds we have
seen so far, which bound the probability of a large deviation uniformly over all functions in the class, and
instead will obtain bounds directly for the function learned by the algorithm. We will see that McDiarmid’s
inequality will be useful in deriving these results as well.
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