
E0 370 Statistical Learning Theory Lecture 8 (Sep 8, 2011)

Algorithmic Stability

Lecturer: Shivani Agarwal Scribe: Harish Guruprasad

1 Introduction

In the last few lectures we have seen a number of different generalization error bounds for learning algorithms,
using notions such as the growth function and VC dimension; covering numbers, pseudo-dimension, and fat-
shattering dimension; margins; and Rademacher averages. While these bounds are different in nature and
apply in different contexts, a unifying factor that they all share is that that they hold uniformly for all
functions in some fixed function class, not just for the function selected by the learning algorithm. In other
words, the bounds hold for any algorithm that picks a function from the given class, no matter how the
algorithm picks this function.

In this lecture we will see an alternative approach for obtaining generalization error bounds that takes into
account the process by which a learning algorithm selects a function – in particular, we will see how to obtain
bounds that apply to algorithms with good stability properties.

2 Stability

In general, an algorithm is stable if a small change in its input does not produce a drastic change in its
output. A learning algorithm can be viewed as taking as input a training sample S ∈

⋃∞
m=1(X × Y)m and

returning as output a function fS : X→Ŷ. One can define various notions of stability for such an algorithm;
we will consider two such notions below that are defined with respect to changes in the input consisting of
replacing a single example in the training sample with a new example.

Notation. For a training sample S = ((x1, y1), . . . , (xm, ym)) ∈ (X × Y)m and an example (x′i, y
′
i), we will

denote by Si:(x
′
i,y

′
i) = ((x1, y1), . . . , (x′i, y

′
i), . . . , (xm, ym)) the training sample obtained by replacing the ith

example in S with (x′i, y
′
i); we will sometimes abbreviate this as Si when the replacement example is clear

from context.

Definition. Let Y, Ŷ ⊆ R, and let A be a symmetric1 algorithm that given a training sample S ∈ (X ×Y)m

as input, returns as output a function fS : X→Ŷ. We say A has (uniform, replacement) score stability
ν : N→[0,∞) if ∀m ∈ N, i ∈ [m], S ∈ (X × Y)m, (x′i, y

′
i) ∈ (X × Y), x ∈ X ,2

|fS(x)− fSi(x)| ≤ ν(m) . (1)

Let ` : Y × Ŷ→[0,∞) be a loss function. We say A has (uniform, replacement) loss stability β : N→[0,∞)
with respect to ` if ∀m ∈ N, i ∈ [m], S ∈ (X × Y)m, (x′i, y

′
i) ∈ X × Y, (x, y) ∈ X × Y,∣∣∣`(y, fS(x))− `(y, fSi(x))

∣∣∣ ≤ β(m) . (2)

1A symmetric learning algorithm A :
⋃∞
m=1(X ×Y)m→F is one that does not depend on the order of the training examples,

i.e. for all m ∈ N, S ∈ (X × Y)m, and permutations σ ∈ Sm, satisfies A(S) = A(Sσ), where Sσ is the sample obtained by
permuting the examples in S according to σ.

2The term uniform here refers to the fact that the bound is required to hold for all training samples S and replacement
examples (x′i, y

′
i); the term replacement refers to the fact that the small changes considered to the input involve replacement

of an example in the training sample with another. Other notions of stability that relax/extend these requirements are also
possible; we will mention some of these briefly later.

1

2 Algorithmic Stability

3 Generalization Error Bounds in Terms of Stability

Theorem 3.1. Let Y, Ŷ ⊆ R, and A a symmetric learning algorithm that given a training sample S ∈
(X ×Y)m, outputs a function fS : X→Ŷ. Let ` : Y × Ŷ→[0, B], and let A have loss stability β w.r.t. `. Let
D be any distribution on X × Y and let 0 < δ < 1. Then with probability at least 1− δ (over S ∼ Dm),

er`D[fS] ≤ er`S [fS] + β(m) +
(

2mβ(m) +B
)√ ln(1

δ)
2m

.

Proof. Define φ : (X × Y)m→R as
φ(S) = er`D[fS]− er`S [fS] .

Then ∀S, k, (x′k, y′k):∣∣∣φ(S)− φ(Sk)
∣∣∣ ≤ ∣∣er`D[fS]− er`D[fSk]

∣∣+
∣∣er`S [fS]− er`Sk [fSk]

∣∣ (3)

=
∣∣∣E(x,y)∼D [`(y, fS(x))− `(y, fSk(x))]

∣∣∣+∣∣∣∣ 1
m

∑
i 6=k

(
`(yi, fS(xi))− `(yi, fSk(xi))

)
+

1
m

(
`(yk, fS(xk))− `(y′k, fSk(x′k))

)∣∣∣∣ (4)

≤ β(m) +
m− 1
m

β(m) +
B

m
(5)

≤ 2β(m) +
B

m
. (6)

Therefore by McDiarmid’s inequality (see Lecture 7 notes, Theorem 2.1), we have

PS∼Dm

(
φ(S)−ES∼Dm [φ(S)] ≥ ε

)
≤ e

−2ε2/
(
m(2β(m)+ B

m)2
)
. (7)

Rewriting the above, we have with probability at least 1− δ (over S ∼ Dm),

er`D[fS]− er`S [fS] ≤ ES∼Dm

[
er`D[fS]− er`S [fS]

]
+ (2mβ(m) +B)

√
ln(1

δ)
2m

. (8)

All that’s left is to bound the expectation above:

ES∼Dm

[
er`D[fS]− er`S [fS]

]
= ES∼Dm

[
E(x,y)∼D [`(y, fS(x))]− 1

m

m∑
i=1

`(yi, fS(xi))
]

(9)

= E(S,(x,y))∼Dm×D

[
`(y, fS(x))− 1

m

m∑
i=1

`(y, fSi:(x,y)(x))
]

(10)

= E(S,(x,y))∼Dm×D

[
`(y, fS(x))− `(y, fS1:(x,y)(x))

]
(by symmetry) (11)

≤ β(m) . (12)

Combining with the above gives the desired result.

A few observations:

1. Unlike the uniform bounds we have seen previously, the above bound holds specifically for the function
fS learned by the algorithm.

2. Need β(m) = o
(

1√
m

)
for the above bound to be useful.

3. For binary classification problems, cannot have non-trivial stability w.r.t. `0-1 directly (why?), but if
an algorithm has good stability w.r.t. some loss ` with ` ≥ `0-1, then one can use the above result to
obtain a high confidence bound on er`D[fS], which in turn yields a bound on er0-1D [fS].

4. If an algorithm A has score stability ν, then for any loss ` that is L-Lipschitz in its second argument,
A has loss stability β = Lν w.r.t. `.

Algorithmic Stability 3

4 Regularization Algorithms in an RKHS

We first briefly review some background material on reproducing kernel Hilbert spaces (RKHSs), and then
discuss stability properties of kernel-based algorithms such as SVMs that learn a function using regularization
in an RKHS.

4.1 Reproducing Kernel Hilbert Spaces

Let K : X × X→R be a symmetric, positive definite kernel function.3,4 For each x ∈ X , define Kx : X→R
as Kx(y) = K(x, y). Let

F0 =

{
f : X→R

∣∣∣ f(x) =
m∑
i=1

αiKxi(x) for some m ∈ N, xi ∈ X , αi ∈ R

}
.

Define an inner product on F0 as〈
m∑
i=1

αiKxi ,

n∑
j=1

βjKyj

〉
=

m∑
i=1

n∑
j=1

αiβjK(xi, yj) .

Let FK be the completion of F0 w.r.t. the metric defined by the norm induced by the above inner product.5

Then the function class FK is called the reproducing kernel Hilbert space (RKHS) associated with the kernel
function K. As the name suggests, any RKHS FK forms a Hilbert space6; in addition, we have that for any
f ∈ FK and x ∈ X ,

〈f,Kx〉 =

〈∑
i

αiKxi
,Kx

〉
=
∑
i

αiKxi
(x) = f(x) .

This property is known as the reproducing property of FK .7

It is worth noting that the classifier learned by the SVM algorithm using a kernel function K has the form
hS(x) = sign(fS(x) + b) for some fS ∈ FK (or if trained without the bias parameter b, the classifier is
simply hS(x) = sign(fS(x)) for some fS ∈ FK); this follows directly from the fact that fS is represented as
fS(x) =

∑m
i=1 αiyiK(xi, x), where S = ((x1, y1), . . . , (xm, ym)) is the training sample and αi are the optimal

values of the dual variables (see Lecture 2 notes).

We also mention the following well-known result:

Theorem 4.1 (Representer Theorem). Let K : X ×X→R be a symmetric, positive definite kernel function,
and let Y ⊆ R. Let S = ((x1, y1), . . . , (xm, ym)) ∈ (X × Y)m. For any loss function ` : Y × R→[0,∞), any
solution fS to the optimization problem

min
f∈FK

1
m

m∑
i=1

`(yi, f(xi)) +
λ

2
‖f‖2K

(where λ > 0) can be expressed as a kernel expansion on the points in S: fS(x) =
∑m
i=1 αiK(xi, x) for some

αi ∈ R.

3Symmetry: K(x, y) = K(y, x) ∀x, y ∈ X .
4Positive-definiteness:

∑m
i=1

∑m
j=1 αiαjK(xi, xj) > 0 ∀m ∈ N, xm1 = (x1, . . . , xm) ∈ Rn,α ∈ Rm,α 6= 0.

5A metric space is said to be complete if every Cauchy sequence in the space converges to a limit in the space; any metric
space can be completed by adding the limit points of all Cauchy sequences in the space to it. Here convergence of functions in
FK is with respect to the metric defined by ‖f − g‖K =

√
〈f − g, f − g〉.

6A Hilbert space is simply an inner product space (vector space with an inner product) that is complete with respect to the
metric defined by the associated inner product (see previous footnote).

7In general, a class of real-valued functions F ∈ RX forms an RKHS if F is a Hilbert space and if there exists a function
K : X × X→R such that (1) K satisfies the reproducing property in F : 〈f(·),K(·, x)〉 = f(x) ∀f ∈ F , x ∈ X , and (2) F is the
completion of the span of {K(·, x) | x ∈ X}.

4 Algorithmic Stability

4.2 Stability of RKHS Regularization Algorithms

Theorem 4.2. Let FK be an RKHS with kernel K : X × X→R such that K(x, x) ≤ κ2 <∞ ∀x ∈ X . Let
Y ⊆ R and ` : Y × R→[0,∞) be convex and L′-Lipschitz in its second argument. Let λ > 0, and let A be a
symmetric algorithm that given a training sample S returns a function fS ∈ FK such that

fS = arg min
f∈FK

er`S [f] +
λ

2
‖f‖2K .

Then A has score stability

ν(m) =
4L′κ2

λm
.

Proof. Let S = ((x1, y1), . . . , (xm, ym)) ∈ (X × Y)m, i ∈ [m], (x′i, y
′
i) ∈ X × Y. For brevity, let f ≡ fS ,

f i ≡ fSi ; and let ∆f = f i − f . Our goal is to show |∆f(x)| ≤ 4L′κ2

λm ∀x ∈ X .

Recall that any convex function φ : U→R satisfies the following for all u, v ∈ U and t ∈ [0, 1]:

φ
(
u+ t(v − u)

)
− φ(u) ≤ t

(
φ(v)− φ(u)

)
.

Since ` is convex in its second argument, we have that er`S [f] is convex in f . Therefore we have ∀t ∈ [0, 1]:

er`S [f + t(f i − f)]− er`S [f] ≤ t
(
er`S [f]− er`S [f i]

)
(13)

er`S [f i + t(f − f i)]− er`S [f i] ≤ t
(
er`S [f i]− er`S [f]

)
. (14)

Adding the above gives

er`S [f + t∆f] + er`S [f i − t∆f] ≤ er`S [f] + er`S [f i] . (15)

Now since FK is a vector space, we have f + t∆f ∈ FK , f i− t∆f ∈ FK . Therefore, since f and f i minimize
over all functions in FK the regularized empirical `-error w.r.t. S and Si, respectively, we have

er`S [f] +
λ

2
‖f‖2K ≤ er`S [f + t∆f] +

λ

2
‖f + t∆f‖2K (16)

er`Si [f i] +
λ

2
‖f i‖2K ≤ er`Si [f i − t∆f] +

λ

2
‖f i − t∆f‖2K . (17)

Adding Eqs. (15-17) then yields

λ

2
(
‖f‖2K + ‖f i‖2K − ‖f + t∆f‖2K − ‖f i − t∆f‖2K

)
(18)

≤
(
er`Si [f i − t∆f]− er`S [f i − t∆f]

)
+
(
er`S [f i]− er`Si [f i]

)
(19)

=
1
m

(
`(y′i, (f

i − t∆f)(x′i))− `(yi, (f i − t∆f)(xi))
)

+
1
m

(
`(yi, f i(xi))− `(y′i, f i(x′i))

)
(20)

=
1
m

(
`(y′i, (f

i − t∆f)(x′i))− `(y′i, f i(x′i))
)

+
1
m

(
`(yi, f i(xi))− `(yi, (f i − t∆f)(xi))

)
(21)

≤ L′

m
(|t∆f(x′i)|+ |t∆f(xi)|) (by Lipschitz property) (22)

=
tL′

m
(|∆f(x′i)|+ |∆f(xi)|) (23)

≤ 2tL′κ
m
‖∆f ||K , (24)

where the last line follows by the reproducing property of FK , Cauchy-Schwartz inequality, and the fact that
K(x, x) ≤ κ2 ∀x ∈ X . Taking t = 1/2 then gives

λ

4
‖∆f‖2K ≤ L′κ

m
‖∆f‖K (25)

Algorithmic Stability 5

which simplifies to

‖∆f‖K ≤ 4L′κ
λm

. (26)

Finally, using the reproducing property and Cauchy-Schwartz again, we get

|∆f(x)| = |〈∆f,Kx〉| ≤ ‖∆f‖K
√
〈Kx,Kx〉 ≤

4L′κ2

λm
. (27)

The result follows.

Stability of SVMs. To see how the above result can be applied to obtain a generalization error bound
for the SVM algorithm, note that SVM satisfies the conditions of the theorem with ` = `hinge, with L′ = 1.
This gives that the SVM algorithm using a kernel function K with K(x, x) ≤ κ2 <∞ ∀x has score stability

ν(m) =
4κ2

λm
.

By observation 4 in Section 3, it follows that the SVM algorithm with kernel K as above then has loss
stability 4κ2

λm w.r.t. `hinge (taking now L = 1); however since the hinge loss is not bounded, we cannot use this
to obtain a generalization error bound from Theorem 3.1. Instead, consider the ramp loss `ramp = `ramp(1)

(see Lecture 6 notes), which is also 1-Lipschitz, so that the SVM algorithm as above has loss stability 4κ2

λm
w.r.t. `ramp as well; since `ramp is bounded in [0, 1] and also forms an upper bound on `0-1, we can then
apply Theorem 3.1 to obtain that with probability at least 1 − δ over S ∼ Dm, the function fS learned by
the SVM algorithm with kernel K as above satisfies

er0-1D [fS] ≤ erramp
S [fS] +

4κ2

λm
+
(8κ2

λ
+B

)√ ln(1
δ)

2m
.

Note that this bound can be applied to the function learned by the SVM algorithm using any kernel function
K for which K(x, x) is bounded, including for example the Gaussian kernel K : Rd × Rd→R given by
K(x,x′) = exp(−‖x−x′‖22

2σ2), for which K(x,x) ≤ 1 ∀x; the Gaussian kernel is known to induce an RKHS
FK for which the associated binary class sign(FK) has infinite VC-dimension, and therefore VC-dimension
bounds cannot be applied to the SVM with this kernel.

The same technique as above can be used to show stability (and generalization error bounds) for support
vector regression (SVR), as well as other regularization-based algorithms; see [1] for more details.

5 Deletion Stability, Leave-one-out Error, and Other Extensions

The notions of stability defined above are in terms of changes to the training sample that consist of replacing
one example; one can also define similar notions of stability in terms of changes consisting of deleting one
example from the sample. Deletion stability clearly implies replacement stability, and is therefore a slightly
stronger condition.

So far, we have used various forms of empirical error (average loss on the training sample, using different
loss functions) to estimate or obtain bounds on the generalization error of a learned function. However the
empirical error is not the only quantity that can be used to obtain such bounds; other quantities can also
be appropriate. One such quantity is the leave-one-out error, which is obtained by training an algorithm A
on m different subsamples S\i, i = 1, . . . ,m of the training sample S = ((x1, y1), . . . , (xm, ym)), where S\i

denotes the sample obtained by removing the i-th example from S, then testing each learned function fS\i

on the left-out-example (xi, yi) and averaging the result:

erloo[A;S] =
1
m

m∑
i=1

`
(
yi, fS\i(xi)

)
, (28)

6 Algorithmic Stability

where fS\i = A(S\i). Deletion stability of A can also be used to obtain bounds on the generalization error
erD[fS] of fS = A(S) similar to those above but in terms of the leave-one-out error erloo[A;S] rather than
the empirical error erS [fS]; see [1] for more details.

In certain cases, it is also helpful to consider weaker notions of stability, such as requiring the bounded
change in the learned function to hold not necessarily uniformly over all training samples and changes
(replacements/deletions), but only with high probability or in expectation over the samples/changes; this
leads to distribution-dependent forms of stability [1, 2].

6 Next Lecture

In the next lecture we will consider bounding the generalization error of functions learned from a hierarchy
of models (function classes) using model selection techniques.

References

[1] Olivier Bousquet and André Elisseeff. Stability and generalization. Journal of Machine Learning Re-
search, 2:499–526, 2002.

[2] Samuel Kutin and Partha Niyogi. Almost-everywhere algorithmic stability and generalization error. In
Proceedings of the 18th Conference on Uncertainty in Artificial Intelligence, 2002.

