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1 Introduction

In the previous lecture, we saw that for a λ−strongly proper composite loss ψ, it is possible to bound the
0 − 1 regret in terms of its ψ−regret. Hence, for λ−strongly proper composite loss ψ, if we have a ψ−
consistent algorithm, we can use it to obtain a 0 − 1 consistent algorithm. However, not all loss functions
used as surrogates in binary classification are proper, the hinge loss being one such example.

In this lecture, we extend the family of loss functions ψ for which ψ− consistency implies 0− 1 consistency.
In particular, we show that (under certain continuity assumptions), it is necessary and sufficient for the loss
function to be classification calibrated in order to satisfy this property.

2 Classification Calibrated Loss Functions

From the previous lecture, we recall that for a given sample S, finding a prediction model hS : X → T that
minimizes the target loss l : Y×T → R+ on S, when the target space is finite, is, in general, computationally
hard. Hence, a commonly used approach is to learn a mapping fS : X → C, where C is some continuous
space, that minimizes the surrogate loss ψ : Y × C → R+ on S, instead. The prediction model is then given
by hS = pred ◦ fS , where pred : C → T . For binary classification, Y = T = {±1}, we often assume C = R
and pred = sign, i.e., hS(x) = sign(fS(x)).

For a given instance x, let η be the true probability of its label being 1. Furthermore, for a given loss
function l : Y × Ŷ → R+, let Ll and Rl denote the conditional l−risk and l−regret respectively. Let
Sη = {α ∈ R : sign(α) /∈ arg minŷ∈{±1} L0−1(η, ŷ)}. We can rewrite the set as

Sη = {α ∈ R : L0−1(η, sign(α)) > min
ŷ∈{±1}

L0,1(η, ŷ)}

= {α ∈ R : L0−1(η, sign(α))− min
ŷ∈{±1}

L0,1(η, ŷ) > 0}

= {α ∈ R : R0−1(η, sign(α)) > 0} (1)

Definition. A loss function ψ : {±1} × R→ R+ is called classification calibrated if ∀η ∈ [0, 1]

inf
α∈Sη

Lψ(η, α) > inf
α∈R

Lψ(η, α) (2)

The RHS in the above equation is the condtional Bayes ψ−risk. Hence, by plugging in (1) we can restate
the above condition as

inf
α∈R:R0−1(η,sign(α))>0

Rψ(η, α) > 0 (3)
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If η > .5, the conditional 0 − 1 risk L0−1 is optimized by assigining ŷ = +1. Hence, treating predictions
sign(0) for η 6= 1

2 as error, we have

α ∈ Sη ⇐⇒ sign(α) /∈ arg min
ŷ∈{±1}

L0−1(η, ŷ) ⇐⇒ α ≤ 0.

Similarly, if η < .5 (again treating predictions sign(0) for η 6= 1
2 as errors):

α ∈ Sη ⇐⇒ sign(α) /∈ arg min
ŷ∈{±1}

L0−1(η, ŷ) ⇐⇒ α ≥ 0.

If η = .5, the set Sη is empty. Combining the above statements, we get

Sη = {α ∈ R : α(η − .5) ≤ 0} (4)

Example 1. Logistic loss: ψlog(y, α) = ln(1 + exp(−yα))
In the previous lecture, we have already seen that the logistic loss is λ−strictly proper composite with λ = 4.
Here, we show that the logistic loss is also classification calibrated. In order to prove it, we first notice that
conditional ψ−risk for the logistic loss given by

Lψ(η, α) = η ln(1 + exp(−α)) + (1− η) ln(1 + exp(α)) ,

is strictly convex in α. Hence, it has a unique minimizer α∗ which can be obtained by differentiating (since
the ψ risk is differentiable in α) the above function and equating it to 0. The corresponding minimizer is
given by

α∗ = ln

(
η

1− η

)

From the above equation, if η > .5, α∗ > 0 and vice-versa. Hence, from (4), α∗ /∈ Sη. Since α∗ is the
unique minimizer, the minimum value of the ψ− risk over the set Sη will be strictly greater than the value
corresponding to α∗. Hence, from (2), the loss functions is classification calibrated.

In fact, it turns out that the above property holds in general for all strictly proper losses when composed
with a link function that satisfies certain properties as mentioned in the next theorem.

Theorem 2.1. For any strictly proper loss l : {±1} × [0, 1]→ R+ and strictly increasing link γ : [0, 1]→ R
with γ( 1

2 ) = 0, the proper composite loss ψ(y, α) = l(y, γ−1(α)) is classification calibrated.

Proof. We have,

Lψ(η, α) = ηψ(1, α) + (1− η)ψ(−1, α)

= ηl(1, γ−1(α)) + (1− η)l(−1, γ−1(α))

= Ll(η, γ
−1(α)) (5)

Since, the loss is strictly proper, for fixed η, conditional l−risk Ll(η, η̂) is minimized uniquely at η̂ = η.
Hence, from (5), α∗ = γ(η) is the unique minimizer of conditional ψ−risk.

Furthermore, since γ is a strictly increasing function with γ( 1
2 ) = 0, we have η > 1

2 ⇒ α∗ = γ(η) > 0 and
η < 1

2 ⇒ α∗ = γ(η) < 0. Hence, α∗(η − 1
2 ) > 0. Since α∗ is also the unique minimizer, we have,

inf
α∈R:α(η− 1

2 )≤0
Lψ(η, α) > inf

α∈R
Lψ(η, α)

Hence, ψ is classification calibrated.
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In general, if the link function does not satisfy the property γ( 1
2 ) = 0, we can define a new link function

γ̄ : [0, 1]→ R, such that γ̄(η) = γ(η)− γ( 1
2 ). The strictly proper composite loss obtained by composing the

strictly proper loss function with this new link function, will then be classification calibrated.

Next, we show that the reverse is not true, i.e., there exist surrogate loss functions ψ : Y × R→ R+, which
are not strictly proper composite, but classification calibrated.

Example 2 (Hinge loss). ψhinge(y, α) = (1− yα)+

We have,

Lhinge(η, α) = η(1− α)+ + (1− η)(1 + α)+

=


η(1− α), if α ≤ −1.

η(1− α) + (1− η)(1 + α), if −1 < α < 1.

(1− η)(1 + α), if α ≥ 1.

(6)

If η < 1
2 , the infimum over the individual ranges in (6) is given by 2η, 2η, 2(1 − η), with corresponding α

values being −1,−1 and 1, respectively. The infimum over the entire range of α is achieved at α∗ = −1.

If η > 1
2 , the infimum over the individual ranges in (6) is given by 2η, 2(1− η), 2(1− η), with corresponding

α values being −1, 1 and 1, respectively. The infimum over the entire range of α is achieved at α∗ = 1.

In either case α∗(η − 1
2 ) > 0, and hence from (4), α∗ /∈ Sη. Since, α∗ is also the unique minimizer,

the conditional ψ−risk is strictly greater than conditional Bayes ψ−risk, and hence the loss function is
classification calibrated.

3 Surrogate regret bounds for classification calibrated loss func-
tions

Theorem 3.1 (Proved for margin based losses by Bartlett et al, 2006 [1] and in more general settings by
Zhang, 2004 [3] and Steinwart, 2007 [2] ). Let ψ : {±1}×R→ R+ be such that ψy(.) = ψ(y, .) is continuous
∀y ∈ {±1}. The follwoing are equivalent:

1. ψ is classification calibrated.

2. ∀ distributions D, regretψD[fS ]
P−→ 0⇒ regret0−1D [sign ◦ fS ]

P−→ 0.

3. There exists an increasing function g : R+ → R+ continuous at 0, with g(0) = 0, such that for all

distributions D, f : X → R, regret0−1D [sign ◦ fS ] ≤ g(regretψD[fS ])

Here, we just prove that (1) ⇒ (3). (3) ⇒ (2) is obvious. We will not prove (2) ⇒ (1) here. In order to
prove the above theorem, we need to define a few more quantities.

• Calibration function (δη): For a given surrogate loss function and fixed η, the calibration function
δη : [0, 1]→ R+ is defined as

δη(ε) = inf
α∈R:R0−1(η,sign(α))≥ε

Rψ(η, α) (7)

It is easy to observe that δη(0) = 0. Furthermore, for a classification calibrated loss, from (3), δη(ε) > 0,
for all ε > 0. Moreover, as ε increases, the infimum has to be taken over a smaller set. Hence, δη(ε) is
a non-decreasing function in ε.

• Uniform calibration function (δ): The uniform calibration function δ : [0, 1]→ R+ is defined as

δ(ε) = inf
η∈[0,1]

δη(ε) (8)

Since δη(0) = 0 for all η ∈ [0, 1], δ(0) = 0. Furthermore, for ε > 0, δ(ε) ≥ 0.
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• Fenchel Legendre biconjugate of δ (δ∗∗): Fenchel Legendre biconjugate of δ is defined as the
function whose epigraph is the closed convex hull of epigraph of δ. In other words, δ∗∗ is the largest
lower semicontinuous convex function that satisfies δ∗∗ ≤ δ.

Theorem 3.2. For all distributions D, and for all functions f : X → R

δ∗∗(regret0−1D [sign ◦ f ]) ≤ regretψD[f ]

Proof.

LHS = δ∗∗(EX [R0,1(η(x), sign(f(x)))])

≤ EX [δ∗∗(R0−1(η(x), sign(f(x))))] (By convexity of δ∗∗)

≤ EX [δ(R0−1(η(x), sign(f(x))))] (∵ δ∗∗ ≤ δ)

From (7) and (8), δ(ε) ≤ Rψ(η, α), for all ε ≤ R0−1(η, sign(α)). In particular δ(R0−1(η, sign(α))) ≤ Rψ(η, α).
Hence,

EX [δ(R0−1(η(x), sign(f(x))))] ≤ EX [Rψ(η(x), f(x))] = regretψD[f ]

Hence, δ∗∗(EX [R0,1(η(x), sign(f(x)))]) ≤ regretψD[f ].

Lemma 3.3. If ψ is l0−1 calibrated and ψy(.) is continuous ∀y ∈ {±1}, then δ(ε) > 0 for all ε > 0.

Now, we are in a position to prove Theorem 3.1.

Proof of Theorem 3.1 1⇒ 3: From Lemma 3.3, δ(ε) > 0 for all ε > 0. Hence, all points in the epigraph of
δ in the interval (0, 1] must lie above the X-axis. Since, epigraph of δ∗∗ is the set of all convex combination
of points in the epigraph of δ, the same must hold true for epigraph of δ∗∗. Hence, δ∗∗ must be greater than
0 in the range (0, 1].

Furthermore since, δ(0) = 0, δ∗∗(0) = 0. Hence, the function is strictly increasing at 0. Thus, it has a positive
slope at x = 0. Furthermore, since δ∗∗ is convex, its slope cannot decrease. Hence, it must have positive
slope in the entire range [0, 1]. Hence, the function is strictly increasing in [0, 1]. Hence, it is invertible.
Combining this result with the result of Theorem 3.2, we get

regret0−1D [sign ◦ f ] ≤ (δ∗∗)−1(regretψD[f ])

4 Margin Based Losses

Recall from previous lectures that a loss function ψ(y, α) that can be written in the form of φ(yα) for some
φ : R→ R+, is termed as margin based loss.

Example 3. Margin based losses:

• Logistic loss: ψlog(y, α) = ln(1 + exp(−yα))

• Exponential loss: ψexp(y, α) = exp(−yα)

• Squared loss: ψsq(y, α) = (1− yα)2

• Hinge loss: ψhinge(yα) = (1− yα)+

Theorem 4.1 (Bartlett et al, 2006 [1]). For any margin based loss ψ : Y × R → R+, uniform calibration
function can be written as

δ(ε) = inf
α∈R:α≤0

Rψ

(
1 + ε

2
, α

)
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Note that, in this case, classification calibration implies δ(ε) > 0 ∀ε > 0, and hence, for margin based losses,
classification calibration always implies a surrogate regret bound for 0− 1 loss.

If ψ(y, α) = φ(yα), with φ convex, then:

1. ψ is l0−1 calibrated ⇐⇒ φ is differentiable and φ′(0) < 0

2. ψ is l0−1 calibrated ⇒ δ∗∗(ε) = φ(0)−Hψ( 1+ε
2 ), where Hψ is the conditional Bayes ψ−risk.

Example 4 (Squared loss). φ(u) = (1− u)2. The conditional Bayes ψ−risk is given by Hsq(η) = 4η(1− η).
From Theorem 4.1, δ∗∗(ε) = 1− (1− ε)(1 + ε) = ε2. By applying Theorem 3.2, we get

regret0−1D [sign ◦ f ] ≤
√

regretsqD [f ]

Since, squared loss is also a λ−proper composite loss with λ = 8, we get from last lecture’s results:

regret0−1D [sign ◦ f ] ≤ 2

√
2

λ
regretsqD [f ]

=
√

regretsqD [f ]

In this case, both bounds turn out to be the same.

Example 5 (Exponential loss). φ(u) = exp(−u). The conditional Bayes ψ−risk is given by Hexp(η) =

2
√
η(1− η). From Theorem 4.1, δ∗∗(ε) = 1 −

√
(1− ε)(1 + ε). Hence, (δ∗∗)−1(ε̄) =

√
2ε̄− ε̄2. By applying

Theorem 3.2, we get from last lecture’s results:

regret0−1D [sign ◦ f ] ≤
√

2 regretexpD [f ]− (regretexpD [f ])2

Since, exponential loss is also a λ−proper composite loss with λ = 4, we get

regret0−1D [sign ◦ f ] ≤
√

2 regretexpD [f ]

In this case, we are able to obtain a tighter bound compared to the bound obtained on using the property
that the loss is strongly proper composite.

Example 6 (Hinge loss). φ(u) = (1−u)+. The conditional Bayes ψ−risk is given by Hhinge(η) = 2 min(η, 1−
η). From Theorem 4.1, δ∗∗(ε) = 1− 2 min{ 1−ε2 , 1+ε2 } = ε. By applying Theorem 3.2, we get

regret0−1D [sign ◦ f ] ≤ regrethingeD [f ]

5 Next Lecture

In the last two lectures, we studied the consistency of surrogate risk minimization for binary classification
problems. In next lecture, we will study the cosistency of surrogate risk minimization for multiclass learning
problems.
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