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Abstract

This paper is concerned with the consistency analysis twidéis ranking meth-
ods. Among various ranking methods, the listwise methogs hampetitive per-
formances on benchmark datasets and are regarded as omestéti-of-the-art
approaches. Most listwise ranking methods manage to amgimginking on the
whole list (permutation) of objects, however, in practiapplications such as in-
formation retrieval, correct ranking at the tbgositions is much more important.
This paper aims to analyze whether existing listwise ramknethods are statisti-
cally consistent in the top-setting. For this purpose, we define a topanking
framework, where the true loss (and thus the risks) are defimethe basis of
top-k subgroup of permutations. This framework can include thenpéation-
level ranking framework proposed in previous work as a spezse. Based on
the new framework, we derive sufficient conditions for anise ranking method
to be consistent with the top-true loss, and show an effective way of modify-
ing the surrogate loss functions in existing methods tsgathese conditions.
Experimental results show that after the modificationsptle¢hods can work sig-
nificantly better than their original versions.

1 Introduction

Ranking is the central problem in many applications inalgdinformation retrieval (IR). In recent
years, machine learning technologies have been sucdgsgiplied to ranking, and many learning
to rank methods have been proposed, including the poinfd/&d9] [6], pairwise [8] [7] [2], and
listwise methods [13] [3] [16]. Empirical results on bendmkdatasets have demonstrated that the
listwise ranking methods have very competitive rankingqremances [10].

To explain the high ranking performances of the listwisekinag methods, a theoretical framework
was proposed in [16]. In the framework, existing listwisekiag methods are interpreted as making
use of different surrogate loss functions of the permutakgvel 0-1 loss. Theoretical analysis shows
that these surrogate loss functions are all statisticalhsistent in the sense that minimization of the
conditional expectation of them will lead to obtaining thayBs ranker, i.e., the optimal ranked list
of the objects.

Here we point out that there is a gap between the analysisirejid many real ranking problems,

where the correct ranking of the entire permutation is neted. For example, in IR, users usually
care much more about the top ranking results and thus onheaoranking at the top positions is

important. In this new situation, it is no longer clear wheetbxisting listwise ranking methods are
still statistically consistent. The motivation of this wds to perform formal study on the issue.

For this purpose, we propose a new ranking framework, in kwttie “true loss” is defined on the
top-k subgroup of permutations instead of on the entire pernwuntafThe new true loss only mea-
sures errors occurring at the tégoositions of a ranked list, therefore we refer to it as thekdpie

loss (Note that whe# equals the length of the ranked list, the toprue loss will become exactly



the permutation-level 0-1 loss). We prove a new theorem hvgiges sufficient conditions for a
surrogate loss function to be consistent with the kdpue loss. We also investigate the change of
the conditions with respect to differeks. Our analysis shows that, &glecreases, to guarantee the
consistency of a surrogate loss function, the requiremerthe probability space becomes weaker
while the requirement on the surrogate loss function itlsefomes stronger. As a result, a surro-
gate loss function that is consistent with the permutakswel 0-1 loss might not be consistent with
the top# true loss any more. Therefore, the surrogate loss functivesisting listwise ranking
methods, which have been proved to be consistent with theytation-level 0-1 loss, are not theo-
retically guaranteed to have good performances in the tegiting. Modifications to these surrogate
loss functions are needed to further make them consistehtthé topk true loss. We show how
to make such modifications, and empirically verify that soutdifications can lead to significant
performance improvement. This validates the correctnesaradheoretical analysis.

2 Permutation-level ranking framework

We review the permutation-level ranking framework progbise[16].

Let X be the input space whose elements are groups of objects mked Y be the output space
whose elements are permutations of objects, Brgt be an unknown but fixed joint probability
distribution of X andY. Leth € H : X — Y be a ranking function. Let € X andy € Y, and
let y(¢) be the index of the object that is ranked at positiom y. The task of learning to rank is to
learn a function that can minimize the expected k), defined as,

R = [ 1), 5)dP(x.y), ®

XxXY

wherel(h(x), y) is the true loss such that
60 ={ ¥ ) 20 @

The above true loss indicates that if the permutation of tieelipted result is exactly the same as
the permutation in the ground truth, then the loss is zeroergtise the loss is one. For ease of
reference, we call it permutation-level 0-1 loss. The optiranking function which can minimize
the expected true risR(h*) = inf R(h) is referred to as the permutation-level Bayes ranker.

h*(x) = arg max P (y[x). ®3)

In practice, for efficiency consideration, the ranking flimie is usually defined a%(x) =
sor{g(x1),...,9(x,)), whereg(-) denotes the scoring function, and fortdenotes the sorting
function. Since the risk is non-continuous and non-diffiéible with respect to the scoring function
g, a continuous and differentiable surrogate loss functifg(x), y) is usually used as an approxi-
mation of the true loss. In this way, the expected risk become

R%(g) = /X Y¢(g(X),y)dP(x,y), 4

whereg(x) = (g(1), ..., g(z,)) is a vector-valued function induced by

It has been shown in [16] that many existing listwise rankimgthods fall into the above framework,

with different surrogate loss functions used. Furthermtreir surrogate loss functions are statis-
tically consistent under certain conditions with respedhe permutation-level 0-1 loss. However,
as shown in the next section, the permutation-level 0-1ibs®t suitable to describe the ranking
problem in many real applications.

3 Top-k ranking framework

We next describe the real ranking problem, and then propessp4 ranking framework.



3.1 Top+* ranking problem

In real ranking applications like IR, people pay more aitanto the top-ranked objects. Therefore
the correct ranking on the top positions is critically imgamt. For example, modern web search
engines only return top, 000 results and 0 results in each page. According to a user stuég%

of search engine users only click on the results within trst fiage, and 90% of users click on the
results within the first three pages. It means that two ratikésiof documents will likely provide
the same experience to the users (and thus suffer the sashdfitisey have the same ranking results
for the top positions. This, however, cannot be reflectetiénpermutation-level 0-1 loss in EQ.(2).
This characteristic of ranking problems has also been ezglm earlier studies in different settings
[4, 5, 14]. We refer to it as the top+anking problem.

3.2 Top+* true loss

To better describe the tapranking problem, we propose defining the true loss basedetoth:
positions in a ranked list, referred to as the fopue loss.

Le(h(x), 1) = { (1) if §(i) = y(i) Woet};{;{v'vis'ék.}’\,vhereg = h(x), 5)

The actual value ok is determined by application. Whdnequals the length of the entire ranked
list, the top# true loss will become exactly the permutation-level 0-klds this regard, the top-
true loss is more general than the permutation-level 04. los

With Eq.(5), the expected risk becomes
Ruh) = [ (). 0P exp) ©®)
XxY

It can be proved that the optimal ranking function with retfie the topk true loss (i.e., the top-
Bayes ranker) is any permutation in the togubgroup having the highest probabity.e.,

h(x) € argmaxc, (j, j,....jnec, P (Gr(it, J2s oy i) %), (7)

whereGy(j1, 42, - jk) = {y € Yl|y(t) = j&, Vt = 1,2, ... k} denotes a tog- subgroup in which
all the permutations have the same fopue loss;Gi. denotes the collection of all topsubgroups.

With the above setting, we will analyze the consistency efghrrogate loss functions in existing
ranking methods with the toptrue loss in the next section.

4 Theoretical analysis

In this section, we first give the sufficient conditions of sistency for the togk ranking problem.
Next, we show how these conditions change with respéetitast, we discuss whether the surrogate
loss functions in existing methods are consistent, and baweake them consistent if not.

4.1 Statistical consistency

We investigate what kinds of surrogate loss functigiig(x),y) are statistically consistent with
the top#4 true loss. For this purpose, we study whether the rankingtiom that minimizes the
conditional expectation of the surrogate loss functionraefias follows coincides with the tdp-
Bayes ranker as defined in Eq.(7).

Q(P(ylx),g(x)) = > P(ylx)(g(x),y). ®)

yey

liProspect Search Engine User Behavior Study, April 2006, http://wwesjzect.com/
2Note that the probability of a top-subgroup is defined as the sum of the probabilities of the permutations
in the subgroup (cf., Definitiond and7 in [3]).



According to [1], the above condition is the weakest conditio guarantee that optimizing a sur-
rogate loss function will lead to obtaining a model achigvihe Bayes risk (in our case, the tép-
Bayes ranker), when the training sample size approachegynfi

We denoteQ (P (y|x), g(x)) asQ(p, g), g(x) asg and P(y|x) asp,. Hence,Q(p,g) is the loss
of g atx with respect to the conditional probability distributipp. The key idea is to decompose
the sorting ofg into pairwise relationship between scores of objects. ®ehd, we denot&; ; as

a permutation set in which each permutation ranks olijéeffore objectj, i.e.,Y; ; £ {y € YV :

y~ (i) < y~1(4)} (herey~1(j) denotes the position of objegtin permutationy), and introduce
the following definitions.

Definition 1. A, is the a topk subgroup probability space, such thAt;,, = {p € RIGx|
ZGk(jl,jQ,...,jk)eGk PGy (51,52, dk) = 1’ka:(j1,j27---,jk-) 2 O}'

Definition 2. A top+ subgroup probability spaca, is order preserving with respect to objects
tandy, if Vy € Y;; and Gi(y(1),y(2),...,y(k)) # Gk(ajjly(l), 1jy(2), . ,]y(k)), we
havepe, (y(1).y(@),..u®) > Pey(or 1y(1),07 Ly(2),.07 Ly (k). HEIEO; !y denotes the permutation

in which the positions of objectsandj are exchanged while those of the other objects remain the
same as iny.

Definition 3. A surrogate loss function is top+ subgroup order sensitive on a $tC R", if ¢
is a non-negative differentiable function and the follogvthree conditions hold fov objectsi and
7 (D) ¢(g.y) = ¢(0; ' g,0, y); (QAssumey; < g;, Yy € Yij. If Gr(y(1),y(2),....y(k)) #

Gk(a;jly(l), o '9(2), ..., 07 jl (k)), theng(g,y) > ¢(g,0” y) and for at least oney, the strict

inequality holds; otherwiseg(g,y) = (b(g,ai’j y). (3) Assumegy; = g] dy € Y;; with
(1), y(2), o y(R)) # Gl }y(1), 071 y(2), oo Ly(k) satislying 2 &) bl

The order preserving property of a topk subgroup probability space (see Definition 2) indicates
that if the topk subgroup probability on a permutatigne Y; ; is larger than that on permutation
0. 1y, then the relation holds for any other permutatiéin Y; ; and and the correspondlrag
provided that the top-subgroup of the former is different from that of the latteihebrder sensmve
property of a surrogate loss function (see Definition 3)datks that (i})(g, y) exhibits a symmetry

in the sense that simultaneously exchanging the positibrebjects: and j in the ground truth
and their scores in the predicted score list will not makegheogate loss change. (i) When a
permutation is transformed to another permutation by exgimg the positions of two objects of it,

if the two permutations do not belong to the same kagibgroup, the loss on the permutation that
ranks the two objects in the decreasing order of their sagiltsot be greater than the loss on its
counterpart. (iii) There exists a permutation, for which #peed of change in loss with respect to
the score of an object will become faster if exchanging it with another object with the same
score but ranked lower. A top-subgroup order sensitive surrogate loss function has alenige
properties as shown below.

Proposition 4. Let ¢(g,y) be a topk subgroup order sensitive loss functionvy,vVr €
Gr(y(1),9(2),...,y(k)), we havep(g, 7) = d(g, y).
Proposition 5. Let¢(g, y) be a topk subgroup order sensitive surrogate loss functiﬁmbjectsi

andj with g; = g;, Vy € Yij, if Gr(y(1),y(2),...,y(k)) # Gi(o; jy(1),0, }y(2), ..o, y(k)),
then d‘ﬁ(ga’;j” > 6¢(g”’> . Otherwise dqﬁ(g’g; iV a‘i’a(iy).

Proposition 4 shows that all permutations in the samektgpbgroup share the same lasg, y)
and thus share the same patrtial difference with respecetedbre of a given object. Proposition 5
indicates that the partial difference ofg, y) also has a similar property (g, y) (see the second
condition in Definition 3). Due to space restriction, we othi proofs (see [15] for more details).

Based on the above definitions and propositions, we give thia theorem (Theorem 6), which
states the sufficient conditions for a surrogate loss fondt be consistent with the tdptrue loss.

Theorem 6. Let ¢ be a topk subgroup order sensitive loss function nc R™ . For Vn ob-
jects, if its topk subgroup probability space is order preserving with reggec: — 1 object pairs
{(i, Jir1) Yoy and {(Jras,, drri : 0 < s; < 0)}7=F, then the loss(g, ) is consistent with the
top-k true loss as defined in Eq.(5).



The proof of the main theorem is mostly based on Theorem 7ctwépecifies the score relation
between two objects for the minimizer @f(p, g). Due to space restriction, we only give Theorem
7 and its detailed proof. For the detailed proof of Theorempl€ase refer to [15].

Theorem 7. Let ¢(g, y) be a topk subgroup order sensitive loss functioki and j, if the top-
k subgroup probability space is order preserving with regpgecthem, andg is a vector which

minimizes)(p, g) in Eq.(8), thery; > g;.

Proof. Without loss of generality, we assume-= 1, j = 2, g = g2, g5 = g1, andg;, = gi(k > 2).

First, we provey; > g, by contradiction. Assumeg, < g», we have

Qp.g) —QP.8) = D (1, —2)O(&Y) = Y (1, — 1) (S(8.y) — d(g. 07 3y)-
yeY IS EW)

The first equation is based on the fggt= Jl_ég, and the second equation is based on the fact
01507 3y = y. After some algebra, by using Proposition 4, we have,

Qp.g) - Qp,g) = > (P, (o5 2y) — POr(w)(0(8,) — 6(8,0129)),

Gr(yv)E{Gr:Gr(¥)#Cr (07 3y) }yEY 2

whereG(y) denotes the subgroup thabelongs to.

Sinceg; < g2, we havep(g,y) > qb(g,ai;y). Meanwhile,ka(a;éy) < pa,(y) due to the order

preserving of the tog-subgroup probability space. Thus each component in the Saoni-positive
and at least one of them is negative, which me@fp, g’) < Q(p,g). This is a contradiction to
the optimality ofg. Therefore, we must havg > g-.

Second, we provg; # go, again by contradiction. Assumg = g». By setting the derivative of
Q(p, g) with respect tg; andgs to zero and compare thémwe have,

-1
Z (py — a;;y)((()(b(g,y) B 8¢(g,01,2y)) —0

YEY . on og

After some algebra, we obtain,

d 0p(g, 01 5
Z (ka(y) _ka(o.;éy))( ¢(g7y) _ ¢(g 0'1721/)) —0.

0 0
G (y) E{GRiGr (1) £Ck (07 Ly) YY1 2 o g

—1
According to Proposition 5, we ha\?é‘% < %‘;*2‘”). Meanwhile,ka(aiéy) < pa,(y) due to

the order preserving of the tdpsubgroup probability space. Thus, the above equation ¢duhd
since at least one of components in the sum is negative déngaaDefinition 3. O

4.2 Consistency with respect td:

We discuss the change of the consistency conditions wiffestso various: values.

First, we have the following proposition for the tépsubgroup probability space.

Proposition 8. If the top+ subgroup probability space is order preserving with resfiembject:
andj, the top{k — 1) subgroup probability space is also order preserving witbpect to; and ;.

The proposition can be proved by decomposing a(fop- 1) subgroup into the sum of top-sub-
groups. One can find the detailed proof in [15]. Here we givexample to illustrate the basic idea.
Suppose there are three objefis2, 3} to be ranked. If the tog-subgroup probability space is or-
der preserving with respect to objedtand2, then we havec, 1 2) > Pa,(2,1) PGs(1,3) > PGa(2,3)
andpg,3,1) > Pa,y(3,2)- On the other hand, for top- we havepg, (1) > pg,2)- Note that
PG (1) = Pa,(1,2) T Pay(1,3) @NADa, (2) = Pay(2,1) + Pay(2,3)- Thus, itis easy to verify that
Proposition 8 holds for this case while the opposite does not

Second, we obtain the following proposition for the surtedass functiony.

3By trivial modifications, one can handle the case thaor g is infinite (cf. [17]).



Proposition 9. If the surrogate loss functiog is top+ subgroup order sensitive on a $etc R",
then it is also toptk + 1) subgroup order sensitive on the same set.

Again, one can refer to [15] for the detailed proof of the msifion, and here we only pro-
vide an example. Let us consider the same setting in the qurevexample. Assume that
g1 < go. If ¢ is top-l subgroup order sensitive, then we havg, (1,2,3)) > ¢(g, (2,1,3)),
6(g, (1,3,2) > (g, (2.3,1)), ande(g, (3,1,2)) = é(g, (3,2, 1)). From Proposition 4, we know
that the two inequalities are strict. On the other hand; i top2 subgroup order sensitive, the
following inequalities hold with at least one of them beindcs: ¢(g, (1,2,3)) > ¢(g,(2,1,3)),
#(g,(1,3,2)) > ¢(g,(2,3,1)), andg(g, (3,1,2)) > ¢(g,(3,2,1)). Therefore topt subgroup
order sensitive is a special case of tbpubgroup order sensitive.

According to the above propositions, we can come to theuatlg conclusions.

o For the consistency with the tdptrue loss, wherk becomes smaller, the requirement on
the probability space becomes weaker but the requiremettteoaurrogate loss function
becomes stronger. Since we never know the real propertyeofuthknown) probability
space, it is more likely the requirement on the probabilggice for the consistency with
the top# true loss can be satisfied than that for the t¢p> k) true loss. Specifically, it is
risky to assume the requirement for the permutation-leveldss to hold.

o If we fix the true loss to be tog-and the probability space to be tépsubgroup order
preserving, the surrogate loss function should be at mgst {6 < k) subgroup order
sensitive in order to meet the consistency conditions.nbtgyuaranteed that a tdgt > k)
subgroup order sensitive surrogate loss function can bsistent with the topk true loss.
For example, a top-1 subgroup order sensitive surrogageflostion may be consistent
with any top# true loss, but a permutation-level order sensitive suted@ss function
may not be consistent with any tdptrue loss, ifk is smaller than the length of the list.

For ease of understanding the above discussions, let usnserample shown in the following
proposition (the proof of this proposition can be found iB])1 It basically says that given a proba-
bility space that is tog-subgroup order preserving, a top-3 subgroup order seasitirogate loss
function may not be consistent with the top-1 true loss.

Proposition 10. Suppose there are three objects to be ranked.a top3 subgroup order sensitive
loss function and the strict inequality(g, (3,1,2)) < ¢(g, (3,2,1)) holds wheng; > g». The

probabilities of permutations argi2s = p1, p132 = 0, p213 = P2, P231 = 0, p312 = 0, p321 = p2
respectively, wherg; > po. Theng is not consistent with the toptrue loss.

The above discussions imply that although the surrogatefloxctions in existing listwise ranking
methods are consistent with the permutation-level 0-1 (osder a rigid condition), they may not
be consistent with the top+rue loss (under a mild condition). Therefore, it is necgstamodify
these surrogate loss functions. We will make discussiorthisrin the next subsection.

4.3 Consistent surrogate loss functions

In [16], the surrogate loss functions in ListNet, RankCesiand ListMLE have been proved to be
permutation-level order sensitive. According to the déston in the previous subsection, however,
they may not be tog-subgroup order sensitive, and therefore not consistehttivt topk true loss.
Even for the consistency with the permutation-level 0-k)as order to guarantee these surrogate
loss functions to be consistent, the requirement on thegtitty space may be too strong in some
real scenarios. To tackle the challenge, it is desirable ddify these surrogate loss functions to
make them topge subgroup order sensitive. Actually this is doable, and thelifications to the
aforementioned surrogate loss functions are given asasllo

4.3.1 Likelihood loss

The likelihood loss is the loss function used in ListMLE [1@hich is defined as below,

exp(yg wy(z)))
1= €xp(9(Ty (1))

#(g(x),y) = —log P(y|x;g),  where P(y|x;g) HZ €)



We propose replacing the permutation probability with thg# subgroup probability (which is also
defined with the Luce model [11]) in the above definition:

exp(g(x
Plyhig) H [ el (10
It can be proved that the modified loss is tbgubgroup order sensitive (see [15]).
4.3.2 Cosine loss
The cosine loss is the loss function used in RankCosine Jll#th is defined as follows,
Hlelx).) = 2(1 - By (1)

20 y)ls)l

where the score vector of the ground truth is produced by gimggunctiony, () : R* — R,
which retains the order in a permutation, i,(z,1)) > -+ > ¥y (2ym))-

We propose changing the mapping function as follows. Lemntl@ping function retain the order
for the topk positions of the ground truth permutation and assigns tthallremaining positions
a small value (which is smaller than the score of any objeckead at the toge positions), i.e.,

wy(xy(l)_)_> > u)y(a;y(_k)) > Yy (Typgn)) = -+ = Yy(Tyn)) = e. Itcan be proved that after
the modification, the cosine loss becomes kogpibgroup order sensitive (see [15]).

4.3.3 Cross entropy loss
The cross entropy loss is the loss function used in ListNed&ined as follows,

$(g(x),y) = D(P(w|x; ¢y)||P(x[x; 8)), 12)

where) is a mapping function whose definition is similar to that imR@osine, andP(r|x;v,)
andP(r|x; g) are the permutation probabilities in the Luce model.

We propose using a mapping function to modify the cross pgti@ss in a similar way as in the case
of the cosine lossIt can be proved that such a modification can make the suedgsas function
top-k subgroup order sensitive (see [15]).

5 Experimental results

In order to validate the theoretical analysis in this work,a@nducted some empirical study. Specifi-
cally, we used OHSUMED, TD2003, and TD2004 in the LETOR bematk dataset [10] to perform
some experiments. As evaluation measure, we adopted Naedddiscounted Cumulative Gain
(N) at positions 1, 3, and 10, and Precision (P) at positiqr and 1@ It is obvious that these
measures are top-elated and are suitable to evaluate the ranking perforenantop# ranking
problems.

We chose ListMLE as example method since the likelihood h@ss nice properties such as con-
vexity, soundness, and linear computational complexi6}.[We refer to the new method that we
obtained by applying the modifications mentioned in Secfichas topk ListMLE. We tried dif-
ferent values of (i.e., k=1, 3, 10, and the exact length of the ranked list). Obviotistylast case
corresponds to the original likelihood loss in ListMLE.

Since the training data in LETOR is given in the form of midtiel ratings, we adopted the methods
proposed in [16] to produce the ground truth ranked list. Wémtused stochastic gradient descent
as the algorithm for optimization of the likelihood loss. fas the ranking model, we chose linear
Neural Network, since the model has been widely used [3, 8], 1

“Note that in [3], a topk cross entropy loss was also proposed, by using thé:topee model. However,
it can be verified that the so-defined tbross entropy loss is still permutation-level order sensitive, but not
top-k subgroup order sensitive. In other words, the proposed modificagimnis still needed.

°0n datasets with only two ratings such as TD2003 and TD2004, N@1 eq@ls P



The experimental results are summarized in Tables 1-3.

Methods N@1 N@3 N@10 P@1 P@3 P@10 Methods N/P@1 N@3 N@10 P@3 P@10

ListMLE 0.548 0.473 0.446 0.642 0.582 0.495 ListMLE 0.24 0.253 0.261 0.22 0.146
Top-1 ListMLE 0.529 0.482 0.447 0.652 0.595 0.499 Top-1 ListMLE 0.4 0.329 0.314 0.3 0.176
Top-3 ListMLE 0.535 0.484 0.445 0.671 0.608 0.504 Top-3 ListMLE 0.44 0.382 0.343 0.34 0.204
Top-10 ListMLE 0.558 0.473 0.444 0.672 0.601 0.509 Top-10 ListMLE 0.5 0.410 0.378 0.38 0.22

Table 1: Ranking accuracies on OHSUMED  Table 2: Ranking accuracies on TD2003

Methods N@1 N@3 N@10 P@1 P@3 P@10

Methods N/P@1 N@3 N@10 P@3 P@10
RankBoost 0.497 0.472 0.435 0.604 0.586 0.495

ListMLE 0.4 0.351 0.356 0.284 0.188
Ranking SVM 0.495 0.464 0.441 0.633 0.592 0.507

Top-1 ListMLE 0.52 0.469 0.451 0.413 0.248

ListNet 0.523 0.477 0.448 0.642 0.602 0.509

Top-3 ListMLE 0.506 0.456 0.458 0.417 0.261

RankCosine 0.523 0.475 0.437 0.642 0.589 0.493

Top-10 ListMLE 0.52 0.469 0.472 0.413 0.269

Top-10 ListMLE 0.558 0.473 0.444 0.672 0.601 0.509

Table 3: Ranking accuracies on TD2004 Table 4: Ranking accuracies on OHSUMED
From the tables, we can see that with the modifications thdngraccuracies of ListMLE can be
significantly boosted, in terms of all measures, on both T&X&nd TD2004. This clearly validates
our theoretical analysis. On OHSUMED, all the loss functiachieve comparable performances.
The possible explanation is that the probability space irfOMED is well formed such that it is
order preserving for many differektvalues.

Next, we take Top-10 ListMLE as an example to make comparnigtmsome other baseline meth-
ods such as Ranking SVM [8], RankBoost [7], ListNet [3], arehRCosine [13]. The results are
listed in Tables 4-6. We can see from the tables, Top-10 Lli&Mchieves the best performance
among all the methods on the TD2003 and TD2004 datasetaws @&fralmost all measures. On the
OHSUMED dataset, it also performs fairly well as comparethtother methods. Especially for
N@1 and P@1, it significantly outperforms all the other mdthon all the datasets.

Methods N/P@1 N@3 N@10 P@3 P@10 Methods N/P@1 N@3 N@10 P@3 P@10
RankBoost 0.26 0.270 0.285 0.24 0.178 RankBoost 0.48 0.463 0.471 0.404 0.253
Ranking SVM 0.42 0.378 0.341 0.34 0.206 Ranking SVM 0.44 0.409 0.420 0.351 0.225
ListNet 0.46 0.408 0.374 0.36 0.222 ListNet 0.439 0.437 0.457 0.399 0.257
RankCosine 0.36 0.346 0.322 0.3 0.182 RankCosine 0.439 0.397 0.405 0.328 0.209
Top-10 ListMLE 0.5 0.410 0.378 0.38 0.22 Top-10 ListMLE 0.52 0.469 0.472 0.413 0.269

Table 5: Ranking accuracies on TD2003 Table 6: Ranking accuracies on TD2004

From the above experimental results, we can come to theusional that for real ranking applica-
tions like IR (where topk evaluation measures are widely used), it is better to usethk true loss
than the permutation-level 0-1 loss, and is better to usentbeified surrogate loss functions than
the original surrogate loss functions.

6 Conclusion

In this paper we have proposed a tbpanking framework, which can better describe real rank-
ing applications like information retrieval. In the framemk, the true loss is defined on the tép-
subgroup of permutations. We have derived the sufficientlitioms for a surrogate loss function
to be statistically consistent with the téptrue loss. We have also discussed how to modify the
loss functions in existing listwise ranking methods to mtieam consistent with the topirue loss.
Our experiments have shown that with the proposed modifiestialgorithms like ListMLE can
significantly outperform their original version, and alsamyg other ranking methods.

As future work, we plan to investigate the following issu@s.we will empirically study the modi-
fied ListNet and RankCosine, to see whether their perforesnan also be significantly boosted in
the top# setting. (2) We will also study the consistency of the poistnand pairwise loss functions
with the top#% true loss.
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