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Abstract

This paper is concerned with the consistency analysis on listwise ranking meth-
ods. Among various ranking methods, the listwise methods have competitive per-
formances on benchmark datasets and are regarded as one of the state-of-the-art
approaches. Most listwise ranking methods manage to optimize ranking on the
whole list (permutation) of objects, however, in practicalapplications such as in-
formation retrieval, correct ranking at the topk positions is much more important.
This paper aims to analyze whether existing listwise ranking methods are statisti-
cally consistent in the top-k setting. For this purpose, we define a top-k ranking
framework, where the true loss (and thus the risks) are defined on the basis of
top-k subgroup of permutations. This framework can include the permutation-
level ranking framework proposed in previous work as a special case. Based on
the new framework, we derive sufficient conditions for a listwise ranking method
to be consistent with the top-k true loss, and show an effective way of modify-
ing the surrogate loss functions in existing methods to satisfy these conditions.
Experimental results show that after the modifications, themethods can work sig-
nificantly better than their original versions.

1 Introduction

Ranking is the central problem in many applications including information retrieval (IR). In recent
years, machine learning technologies have been successfully applied to ranking, and many learning
to rank methods have been proposed, including the pointwise[12] [9] [6], pairwise [8] [7] [2], and
listwise methods [13] [3] [16]. Empirical results on benchmark datasets have demonstrated that the
listwise ranking methods have very competitive ranking performances [10].

To explain the high ranking performances of the listwise ranking methods, a theoretical framework
was proposed in [16]. In the framework, existing listwise ranking methods are interpreted as making
use of different surrogate loss functions of the permutation-level 0-1 loss. Theoretical analysis shows
that these surrogate loss functions are all statistically consistent in the sense that minimization of the
conditional expectation of them will lead to obtaining the Bayes ranker, i.e., the optimal ranked list
of the objects.

Here we point out that there is a gap between the analysis in [16] and many real ranking problems,
where the correct ranking of the entire permutation is not needed. For example, in IR, users usually
care much more about the top ranking results and thus only correct ranking at the top positions is
important. In this new situation, it is no longer clear whether existing listwise ranking methods are
still statistically consistent. The motivation of this work is to perform formal study on the issue.

For this purpose, we propose a new ranking framework, in which the “true loss” is defined on the
top-k subgroup of permutations instead of on the entire permutation. The new true loss only mea-
sures errors occurring at the topk positions of a ranked list, therefore we refer to it as the top-k true
loss (Note that whenk equals the length of the ranked list, the top-k true loss will become exactly
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the permutation-level 0-1 loss). We prove a new theorem which gives sufficient conditions for a
surrogate loss function to be consistent with the top-k true loss. We also investigate the change of
the conditions with respect to differentk’s. Our analysis shows that, ask decreases, to guarantee the
consistency of a surrogate loss function, the requirement on the probability space becomes weaker
while the requirement on the surrogate loss function itselfbecomes stronger. As a result, a surro-
gate loss function that is consistent with the permutation-level 0-1 loss might not be consistent with
the top-k true loss any more. Therefore, the surrogate loss functionsin existing listwise ranking
methods, which have been proved to be consistent with the permutation-level 0-1 loss, are not theo-
retically guaranteed to have good performances in the top-k setting. Modifications to these surrogate
loss functions are needed to further make them consistent with the top-k true loss. We show how
to make such modifications, and empirically verify that suchmodifications can lead to significant
performance improvement. This validates the correctness of our theoretical analysis.

2 Permutation-level ranking framework

We review the permutation-level ranking framework proposed in [16].

LetX be the input space whose elements are groups of objects to be ranked,Y be the output space
whose elements are permutations of objects, andPXY be an unknown but fixed joint probability
distribution ofX andY . Let h ∈ H : X → Y be a ranking function. Letx ∈ X andy ∈ Y , and
let y(i) be the index of the object that is ranked at positioni in y. The task of learning to rank is to
learn a function that can minimize the expected riskR(h), defined as,

R(h) =

∫

X×Y

l(h(x), y)dP (x, y), (1)

wherel(h(x), y) is the true loss such that

l(h(x), y) =

{

1, if h(x) 6= y
0, if h(x) = y.

(2)

The above true loss indicates that if the permutation of the predicted result is exactly the same as
the permutation in the ground truth, then the loss is zero; otherwise the loss is one. For ease of
reference, we call it permutation-level 0-1 loss. The optimal ranking function which can minimize
the expected true riskR(h∗) = inf R(h) is referred to as the permutation-level Bayes ranker.

h∗(x) = arg max
y∈Y

P (y|x). (3)

In practice, for efficiency consideration, the ranking function is usually defined ash(x) =
sort(g(x1), . . . , g(xn)), whereg(·) denotes the scoring function, and sort(·) denotes the sorting
function. Since the risk is non-continuous and non-differentiable with respect to the scoring function
g, a continuous and differentiable surrogate loss functionφ(g(x), y) is usually used as an approxi-
mation of the true loss. In this way, the expected risk becomes

Rφ(g) =

∫

X×Y

φ(g(x), y)dP (x, y), (4)

whereg(x) = (g(x1), . . . , g(xn)) is a vector-valued function induced byg.

It has been shown in [16] that many existing listwise rankingmethods fall into the above framework,
with different surrogate loss functions used. Furthermore, their surrogate loss functions are statis-
tically consistent under certain conditions with respect to the permutation-level 0-1 loss. However,
as shown in the next section, the permutation-level 0-1 lossis not suitable to describe the ranking
problem in many real applications.

3 Top-k ranking framework

We next describe the real ranking problem, and then propose the top-k ranking framework.
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3.1 Top-k ranking problem

In real ranking applications like IR, people pay more attention to the top-ranked objects. Therefore
the correct ranking on the top positions is critically important. For example, modern web search
engines only return top1, 000 results and10 results in each page. According to a user study1, 62%
of search engine users only click on the results within the first page, and 90% of users click on the
results within the first three pages. It means that two rankedlists of documents will likely provide
the same experience to the users (and thus suffer the same loss), if they have the same ranking results
for the top positions. This, however, cannot be reflected in the permutation-level 0-1 loss in Eq.(2).
This characteristic of ranking problems has also been explored in earlier studies in different settings
[4, 5, 14]. We refer to it as the top-k ranking problem.

3.2 Top-k true loss

To better describe the top-k ranking problem, we propose defining the true loss based on the topk
positions in a ranked list, referred to as the top-k true loss.

lk(h(x), y) =

{

0, if ŷ(i) = y(i) ∀i ∈ {1, . . . , k},whereŷ = h(x),
1, otherwise .

(5)

The actual value ofk is determined by application. Whenk equals the length of the entire ranked
list, the top-k true loss will become exactly the permutation-level 0-1 loss. In this regard, the top-k
true loss is more general than the permutation-level 0-1 loss.

With Eq.(5), the expected risk becomes

Rk(h) =

∫

X×Y

lk(h(x), y)dP (x, y). (6)

It can be proved that the optimal ranking function with respect to the top-k true loss (i.e., the top-k
Bayes ranker) is any permutation in the top-k subgroup having the highest probability2, i.e.,

h∗k(x) ∈ arg maxGk(j1,j2,...,jk)∈Gk
P (Gk(j1, j2, ..., jk)|x), (7)

whereGk(j1, j2, ..., jk) = {y ∈ Y |y(t) = jt,∀t = 1, 2, . . . k} denotes a top-k subgroup in which
all the permutations have the same top-k true loss;Gk denotes the collection of all top-k subgroups.

With the above setting, we will analyze the consistency of the surrogate loss functions in existing
ranking methods with the top-k true loss in the next section.

4 Theoretical analysis

In this section, we first give the sufficient conditions of consistency for the top-k ranking problem.
Next, we show how these conditions change with respect tok. Last, we discuss whether the surrogate
loss functions in existing methods are consistent, and how to make them consistent if not.

4.1 Statistical consistency

We investigate what kinds of surrogate loss functionsφ(g(x), y) are statistically consistent with
the top-k true loss. For this purpose, we study whether the ranking function that minimizes the
conditional expectation of the surrogate loss function defined as follows coincides with the top-k
Bayes ranker as defined in Eq.(7).

Q(P (y|x),g(x)) =
∑

y∈Y

P (y|x)φ(g(x), y). (8)

1iProspect Search Engine User Behavior Study, April 2006, http://www.iprospect.com/
2Note that the probability of a top-k subgroup is defined as the sum of the probabilities of the permutations

in the subgroup (cf., Definitions6 and7 in [3]).
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According to [1], the above condition is the weakest condition to guarantee that optimizing a sur-
rogate loss function will lead to obtaining a model achieving the Bayes risk (in our case, the top-k
Bayes ranker), when the training sample size approaches infinity.

We denoteQ(P (y|x),g(x)) asQ(p,g), g(x) asg andP (y|x) aspy. Hence,Q(p,g) is the loss
of g at x with respect to the conditional probability distributionpy. The key idea is to decompose
the sorting ofg into pairwise relationship between scores of objects. To this end, we denoteYi,j as
a permutation set in which each permutation ranks objecti before objectj, i.e.,Yi,j , {y ∈ Y :
y−1(i) < y−1(j)} (herey−1(j) denotes the position of objectj in permutationy), and introduce
the following definitions.

Definition 1. ΛGk
is the a top-k subgroup probability space, such thatΛGk

, {p ∈ R|Gk| :
∑

Gk(j1,j2,...,jk)∈Gk
pGk(j1,j2,...,jk) = 1, pGk(j1,j2,...,jk) ≥ 0}.

Definition 2. A top-k subgroup probability spaceΛGk
is order preserving with respect to objects

i and j, if ∀y ∈ Yi,j and Gk(y(1), y(2), ..., y(k)) 6= Gk(σ−1
i,j y(1), σ−1

i,j y(2), ..., σ−1
i,j y(k)), we

havepGk(y(1),y(2),...,y(k)) > pGk(σ−1

i,j
y(1),σ−1

i,j
y(2),...,σ−1

i,j
y(k)). Hereσ−1

i,j y denotes the permutation

in which the positions of objectsi andj are exchanged while those of the other objects remain the
same as iny.

Definition 3. A surrogate loss functionφ is top-k subgroup order sensitive on a setΩ ⊂ Rn, if φ
is a non-negative differentiable function and the following three conditions hold for∀ objectsi and
j: (1) φ(g, y) = φ(σ−1

i,j g, σ−1
i,j y); (2)Assumegi < gj , ∀y ∈ Yi,j . If Gk(y(1), y(2), ..., y(k)) 6=

Gk(σ−1
i,j y(1), σ−1

i,j y(2), ..., σ−1
i,j y(k)), thenφ(g, y) ≥ φ(g, σ−1

i,j y) and for at least oney, the strict

inequality holds; otherwise,φ(g, y) = φ(g, σ−1
i,j y). (3) Assumegi = gj . ∃y ∈ Yi,j with

Gk(y(1), y(2), ..., y(k)) 6= Gk(σ−1
i,j y(1), σ−1

i,j y(2), ..., σ−1
i,j y(k)) satisfying

∂φ(g,σ
−1

i,j
y)

∂gi
>

∂φ(g,y)
∂gi

.

The order preserving property of a top-k subgroup probability space (see Definition 2) indicates
that if the top-k subgroup probability on a permutationy ∈ Yi,j is larger than that on permutation
σ−1

i,j y, then the relation holds for any other permutationy′ in Yi,j and and the correspondingσ−1
i,j y

′

provided that the top-k subgroup of the former is different from that of the latter. Theorder sensitive
property of a surrogate loss function (see Definition 3) indicates that (i)φ(g, y) exhibits a symmetry
in the sense that simultaneously exchanging the positions of objectsi and j in the ground truth
and their scores in the predicted score list will not make thesurrogate loss change. (ii) When a
permutation is transformed to another permutation by exchanging the positions of two objects of it,
if the two permutations do not belong to the same top-k subgroup, the loss on the permutation that
ranks the two objects in the decreasing order of their scoreswill not be greater than the loss on its
counterpart. (iii) There exists a permutation, for which the speed of change in loss with respect to
the score of an object will become faster if exchanging its position with another object with the same
score but ranked lower. A top-k subgroup order sensitive surrogate loss function has several nice
properties as shown below.
Proposition 4. Let φ(g, y) be a top-k subgroup order sensitive loss function.∀y,∀π ∈
Gk(y(1), y(2), . . . , y(k)), we haveφ(g, π) = φ(g, y).

Proposition 5. Letφ(g, y) be a top-k subgroup order sensitive surrogate loss function.∀ objectsi
andj with gi = gj , ∀y ∈ Yi,j , if Gk(y(1), y(2), ..., y(k)) 6= Gk(σ−1

i,j y(1), σ−1
i,j y(2), ..., σ−1

i,j y(k)),

then
∂φ(g,σ

−1

i,j
y)

∂gi
≥ ∂φ(g,y)

∂gi
. Otherwise,

∂φ(g,σ
−1

i,j
y)

∂gi
= ∂φ(g,y)

∂gi
.

Proposition 4 shows that all permutations in the same top-k subgroup share the same lossφ(g, y)
and thus share the same partial difference with respect to the score of a given object. Proposition 5
indicates that the partial difference ofφ(g, y) also has a similar property toφ(g, y) (see the second
condition in Definition 3). Due to space restriction, we omitthe proofs (see [15] for more details).

Based on the above definitions and propositions, we give the main theorem (Theorem 6), which
states the sufficient conditions for a surrogate loss function to be consistent with the top-k true loss.
Theorem 6. Let φ be a top-k subgroup order sensitive loss function onΩ ⊂ Rn . For ∀n ob-
jects, if its top-k subgroup probability space is order preserving with respect to n − 1 object pairs
{(ji, ji+1)}

k
i=1 and{(jk+si

, jk+i : 0 ≤ si < i)}n−k
i=2 , then the lossφ(g, y) is consistent with the

top-k true loss as defined in Eq.(5).
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The proof of the main theorem is mostly based on Theorem 7, which specifies the score relation
between two objects for the minimizer ofQ(p,g). Due to space restriction, we only give Theorem
7 and its detailed proof. For the detailed proof of Theorem 6,please refer to [15].
Theorem 7. Let φ(g, y) be a top-k subgroup order sensitive loss function.∀i and j, if the top-
k subgroup probability space is order preserving with respect to them, andg is a vector which
minimizesQ(p,g) in Eq.(8), thengi > gj .

Proof. Without loss of generality, we assumei = 1, j = 2, g′1 = g2, g′2 = g1, andg′k = gk(k > 2).

First, we proveg1 ≥ g2 by contradiction. Assumeg1 < g2, we have

Q(p,g′) −Q(p,g) =
∑

y∈Y

(pσ
−1

1,2y − py)φ(g, y) =
∑

y∈Y1,2

(pσ
−1

1,2y − py)(φ(g, y) − φ(g, σ−1
1,2y)).

The first equation is based on the factg
′ = σ−1

1,2g, and the second equation is based on the fact
σ−1

1,2σ
−1
1,2y = y. After some algebra, by using Proposition 4, we have,

Q(p,g′) −Q(p,g) =
∑

Gk(y)∈{Gk:Gk(y) 6=Gk(σ−1

1,2y)}:y∈Y1,2

(pGk(σ−1

1,2y) − pGk(y))(φ(g, y) − φ(g, σ−1
1,2y)),

whereGk(y) denotes the subgroup thaty belongs to.

Sinceg1 < g2, we haveφ(g, y) ≥ φ(g, σ−1
1,2y). Meanwhile,pGk(σ−1

1,2y) < pGk(y) due to the order

preserving of the top-k subgroup probability space. Thus each component in the sum is non-positive
and at least one of them is negative, which meansQ(p,g′) < Q(p,g). This is a contradiction to
the optimality ofg. Therefore, we must haveg1 ≥ g2.

Second, we proveg1 6= g2, again by contradiction. Assumeg1 = g2. By setting the derivative of
Q(p,g) with respect tog1 andg2 to zero and compare them3, we have,

∑

y∈Y1,2

(py − pσ
−1

1,2y)(
∂φ(g, y)

∂g1
−
∂φ(g, σ−1

1,2y)

∂g1
) = 0.

After some algebra, we obtain,

∑

Gk(y)∈{Gk:Gk(y) 6=Gk(σ−1

1,2y)}:y∈Y1,2

(pGk(y) − pGk(σ−1

1,2y))(
∂φ(g, y)

∂g1
−
∂φ(g, σ−1

1,2y)

∂g1
) = 0.

According to Proposition 5, we have∂φ(g,y)
∂g1

≤
∂φ(g,σ

−1

1,2y)

∂g1

. Meanwhile,pGk(σ−1

1,2y) < pGk(y) due to

the order preserving of the top-k subgroup probability space. Thus, the above equation cannot hold
since at least one of components in the sum is negative according to Definition 3.

4.2 Consistency with respect tok

We discuss the change of the consistency conditions with respect to variousk values.

First, we have the following proposition for the top-k subgroup probability space.
Proposition 8. If the top-k subgroup probability space is order preserving with respect to objecti
andj, the top-(k − 1) subgroup probability space is also order preserving with respect toi andj.

The proposition can be proved by decomposing a top-(k − 1) subgroup into the sum of top-k sub-
groups. One can find the detailed proof in [15]. Here we give anexample to illustrate the basic idea.
Suppose there are three objects{1, 2, 3} to be ranked. If the top-2 subgroup probability space is or-
der preserving with respect to objects1 and2, then we havepG2(1,2) > pG2(2,1), pG2(1,3) > pG2(2,3)

and pG2(3,1) > pG2(3,2). On the other hand, for top-1, we havepG1(1) > pG1(2). Note that
pG1(1) = pG2(1,2) + pG2(1,3) andpG1(2) = pG2(2,1) + pG2(2,3). Thus, it is easy to verify that
Proposition 8 holds for this case while the opposite does not.

Second, we obtain the following proposition for the surrogate loss functionφ.

3By trivial modifications, one can handle the case thatg1 or g2 is infinite (cf. [17]).
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Proposition 9. If the surrogate loss functionφ is top-k subgroup order sensitive on a setΩ ⊂ Rn,
then it is also top-(k + 1) subgroup order sensitive on the same set.

Again, one can refer to [15] for the detailed proof of the proposition, and here we only pro-
vide an example. Let us consider the same setting in the previous example. Assume that
g1 < g2. If φ is top-1 subgroup order sensitive, then we haveφ(g, (1, 2, 3)) ≥ φ(g, (2, 1, 3)),
φ(g, (1, 3, 2)) ≥ φ(g, (2, 3, 1)), andφ(g, (3, 1, 2)) = φ(g, (3, 2, 1)). From Proposition 4, we know
that the two inequalities are strict. On the other hand, ifφ is top-2 subgroup order sensitive, the
following inequalities hold with at least one of them being strict: φ(g, (1, 2, 3)) ≥ φ(g, (2, 1, 3)),
φ(g, (1, 3, 2)) ≥ φ(g, (2, 3, 1)), andφ(g, (3, 1, 2)) ≥ φ(g, (3, 2, 1)). Therefore top-1 subgroup
order sensitive is a special case of top-2 subgroup order sensitive.

According to the above propositions, we can come to the following conclusions.

• For the consistency with the top-k true loss, whenk becomes smaller, the requirement on
the probability space becomes weaker but the requirement onthe surrogate loss function
becomes stronger. Since we never know the real property of the (unknown) probability
space, it is more likely the requirement on the probability space for the consistency with
the top-k true loss can be satisfied than that for the top-l (l > k) true loss. Specifically, it is
risky to assume the requirement for the permutation-level 0-1 loss to hold.

• If we fix the true loss to be top-k and the probability space to be top-k subgroup order
preserving, the surrogate loss function should be at most top-l (l ≤ k) subgroup order
sensitive in order to meet the consistency conditions. It isnot guaranteed that a top-l (l > k)
subgroup order sensitive surrogate loss function can be consistent with the top-k true loss.
For example, a top-1 subgroup order sensitive surrogate loss function may be consistent
with any top-k true loss, but a permutation-level order sensitive surrogate loss function
may not be consistent with any top-k true loss, ifk is smaller than the length of the list.

For ease of understanding the above discussions, let us see an example shown in the following
proposition (the proof of this proposition can be found in [15]). It basically says that given a proba-
bility space that is top-1 subgroup order preserving, a top-3 subgroup order sensitive surrogate loss
function may not be consistent with the top-1 true loss.

Proposition 10. Suppose there are three objects to be ranked.φ is a top-3 subgroup order sensitive
loss function and the strict inequalityφ(g, (3, 1, 2)) < φ(g, (3, 2, 1)) holds wheng1 > g2. The
probabilities of permutations arep123 = p1, p132 = 0, p213 = p2, p231 = 0, p312 = 0, p321 = p2

respectively, wherep1 > p2. Thenφ is not consistent with the top-1 true loss.

The above discussions imply that although the surrogate loss functions in existing listwise ranking
methods are consistent with the permutation-level 0-1 loss(under a rigid condition), they may not
be consistent with the top-k true loss (under a mild condition). Therefore, it is necessary to modify
these surrogate loss functions. We will make discussions onthis in the next subsection.

4.3 Consistent surrogate loss functions

In [16], the surrogate loss functions in ListNet, RankCosine, and ListMLE have been proved to be
permutation-level order sensitive. According to the discussion in the previous subsection, however,
they may not be top-k subgroup order sensitive, and therefore not consistent with the top-k true loss.
Even for the consistency with the permutation-level 0-1 loss, in order to guarantee these surrogate
loss functions to be consistent, the requirement on the probability space may be too strong in some
real scenarios. To tackle the challenge, it is desirable to modify these surrogate loss functions to
make them top-k subgroup order sensitive. Actually this is doable, and the modifications to the
aforementioned surrogate loss functions are given as follows.

4.3.1 Likelihood loss

The likelihood loss is the loss function used in ListMLE [16], which is defined as below,

φ(g(x), y) = − logP (y|x;g), where P (y|x;g) =
n

∏

i=1

exp(g(xy(i)))
∑n

t=i exp(g(xy(t)))
. (9)
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We propose replacing the permutation probability with the top-k subgroup probability (which is also
defined with the Luce model [11]) in the above definition:

P (y|x;g) =

k
∏

i=1

exp(g(xy(i)))
∑n

t=i exp(g(xy(t)))
. (10)

It can be proved that the modified loss is top-k subgroup order sensitive (see [15]).

4.3.2 Cosine loss

The cosine loss is the loss function used in RankCosine [13],which is defined as follows,

φ(g(x), y) =
1

2
(1 −

ψy(x)T
g(x)

‖ψy(x)‖‖g(x)‖
), (11)

where the score vector of the ground truth is produced by a mapping functionψy(·) : Rd → R,
which retains the order in a permutation, i.e.,ψy(xy(1)) > · · · > ψy(xy(n)).

We propose changing the mapping function as follows. Let themapping function retain the order
for the topk positions of the ground truth permutation and assigns to allthe remaining positions
a small value (which is smaller than the score of any object ranked at the top-k positions), i.e.,
ψy(xy(1)) > · · · > ψy(xy(k)) > ψy(xy(k+1)) = · · · = ψy(xy(n)) = ε. It can be proved that after
the modification, the cosine loss becomes top-k subgroup order sensitive (see [15]).

4.3.3 Cross entropy loss

The cross entropy loss is the loss function used in ListNet [3], defined as follows,

φ(g(x), y) = D(P (π|x;ψy)||P (π|x;g)), (12)

whereψ is a mapping function whose definition is similar to that in RankCosine, andP (π|x;ψy)
andP (π|x;g) are the permutation probabilities in the Luce model.

We propose using a mapping function to modify the cross entropy loss in a similar way as in the case
of the cosine loss4 It can be proved that such a modification can make the surrogate loss function
top-k subgroup order sensitive (see [15]).

5 Experimental results

In order to validate the theoretical analysis in this work, we conducted some empirical study. Specifi-
cally, we used OHSUMED, TD2003, and TD2004 in the LETOR benchmark dataset [10] to perform
some experiments. As evaluation measure, we adopted Normalized Discounted Cumulative Gain
(N) at positions 1, 3, and 10, and Precision (P) at positions 1, 3, and 10.5 It is obvious that these
measures are top-k related and are suitable to evaluate the ranking performance in top-k ranking
problems.

We chose ListMLE as example method since the likelihood losshas nice properties such as con-
vexity, soundness, and linear computational complexity [16]. We refer to the new method that we
obtained by applying the modifications mentioned in Section4.3 as top-k ListMLE. We tried dif-
ferent values ofk (i.e.,k=1, 3, 10, and the exact length of the ranked list). Obviouslythe last case
corresponds to the original likelihood loss in ListMLE.

Since the training data in LETOR is given in the form of multi-level ratings, we adopted the methods
proposed in [16] to produce the ground truth ranked list. We then used stochastic gradient descent
as the algorithm for optimization of the likelihood loss. Asfor the ranking model, we chose linear
Neural Network, since the model has been widely used [3, 13, 16].

4Note that in [3], a top-k cross entropy loss was also proposed, by using the top-k Luce model. However,
it can be verified that the so-defined top-k cross entropy loss is still permutation-level order sensitive, but not
top-k subgroup order sensitive. In other words, the proposed modificationhere is still needed.

5On datasets with only two ratings such as TD2003 and TD2004, N@1 equals P@1.
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The experimental results are summarized in Tables 1-3.

Methods N@1 N@3 N@10 P@1 P@3 P@10

ListMLE 0.548 0.473 0.446 0.642 0.582 0.495

Top-1 ListMLE 0.529 0.482 0.447 0.652 0.595 0.499

Top-3 ListMLE 0.535 0.484 0.445 0.671 0.608 0.504

Top-10 ListMLE 0.558 0.473 0.444 0.672 0.601 0.509

Table 1: Ranking accuracies on OHSUMED

Methods N/P@1 N@3 N@10 P@3 P@10

ListMLE 0.24 0.253 0.261 0.22 0.146

Top-1 ListMLE 0.4 0.329 0.314 0.3 0.176

Top-3 ListMLE 0.44 0.382 0.343 0.34 0.204

Top-10 ListMLE 0.5 0.410 0.378 0.38 0.22

Table 2: Ranking accuracies on TD2003

Methods N/P@1 N@3 N@10 P@3 P@10

ListMLE 0.4 0.351 0.356 0.284 0.188

Top-1 ListMLE 0.52 0.469 0.451 0.413 0.248

Top-3 ListMLE 0.506 0.456 0.458 0.417 0.261

Top-10 ListMLE 0.52 0.469 0.472 0.413 0.269

Table 3: Ranking accuracies on TD2004

Methods N@1 N@3 N@10 P@1 P@3 P@10

RankBoost 0.497 0.472 0.435 0.604 0.586 0.495

Ranking SVM 0.495 0.464 0.441 0.633 0.592 0.507

ListNet 0.523 0.477 0.448 0.642 0.602 0.509

RankCosine 0.523 0.475 0.437 0.642 0.589 0.493

Top-10 ListMLE 0.558 0.473 0.444 0.672 0.601 0.509

Table 4: Ranking accuracies on OHSUMED

From the tables, we can see that with the modifications the ranking accuracies of ListMLE can be
significantly boosted, in terms of all measures, on both TD2003 and TD2004. This clearly validates
our theoretical analysis. On OHSUMED, all the loss functions achieve comparable performances.
The possible explanation is that the probability space in OHSUMED is well formed such that it is
order preserving for many differentk values.

Next, we take Top-10 ListMLE as an example to make comparisonwith some other baseline meth-
ods such as Ranking SVM [8], RankBoost [7], ListNet [3], and RankCosine [13]. The results are
listed in Tables 4-6. We can see from the tables, Top-10 ListMLE achieves the best performance
among all the methods on the TD2003 and TD2004 datasets in terms of almost all measures. On the
OHSUMED dataset, it also performs fairly well as compared tothe other methods. Especially for
N@1 and P@1, it significantly outperforms all the other methods on all the datasets.

Methods N/P@1 N@3 N@10 P@3 P@10

RankBoost 0.26 0.270 0.285 0.24 0.178

Ranking SVM 0.42 0.378 0.341 0.34 0.206

ListNet 0.46 0.408 0.374 0.36 0.222

RankCosine 0.36 0.346 0.322 0.3 0.182

Top-10 ListMLE 0.5 0.410 0.378 0.38 0.22

Table 5: Ranking accuracies on TD2003

Methods N/P@1 N@3 N@10 P@3 P@10

RankBoost 0.48 0.463 0.471 0.404 0.253

Ranking SVM 0.44 0.409 0.420 0.351 0.225

ListNet 0.439 0.437 0.457 0.399 0.257

RankCosine 0.439 0.397 0.405 0.328 0.209

Top-10 ListMLE 0.52 0.469 0.472 0.413 0.269

Table 6: Ranking accuracies on TD2004

From the above experimental results, we can come to the conclusion that for real ranking applica-
tions like IR (where top-k evaluation measures are widely used), it is better to use thetop-k true loss
than the permutation-level 0-1 loss, and is better to use themodified surrogate loss functions than
the original surrogate loss functions.

6 Conclusion

In this paper we have proposed a top-k ranking framework, which can better describe real rank-
ing applications like information retrieval. In the framework, the true loss is defined on the top-k
subgroup of permutations. We have derived the sufficient conditions for a surrogate loss function
to be statistically consistent with the top-k true loss. We have also discussed how to modify the
loss functions in existing listwise ranking methods to makethem consistent with the top-k true loss.
Our experiments have shown that with the proposed modifications, algorithms like ListMLE can
significantly outperform their original version, and also many other ranking methods.

As future work, we plan to investigate the following issues.(1) we will empirically study the modi-
fied ListNet and RankCosine, to see whether their performances can also be significantly boosted in
the top-k setting. (2) We will also study the consistency of the pointwise and pairwise loss functions
with the top-k true loss.
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