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Abstract

We consider multi-label prediction problems with largepuitspaces under the
assumption obutput sparsity- that the target (label) vectors have small support.
We develop a general theory for a variant of the popular eroorecting output
code scheme, using ideas from compressed sensing for &Exglthis sparsity.
The method can be regarded as a simple reduction from rabkiHregression
problems to binary regression problems. We show that thebeumof subprob-
lems need only be logarithmic in the total number of posdatbels, making this
approach radically more efficient than others. We also statkeprove robustness
guarantees for this method in the form of regret transformnis (in general),
and also provide a more detailed analysis for the linearigtied setting.

1 Introduction

Suppose we have a large database of images, and we wantrtadgaedict who or what is in any
given one. A standard approach to this task is to collect gpbawf these images along with
corresponding labelg = (yi,...,yq) € {0,1}¢, wherey; = 1 if and only if person or object

is depicted in image;, and then feed the labeled sample to a multi-label learnigayighm. Here,

d is the total number of entities depicted in the entire databaVhend is very large €.9.102,
10%), the simple one-against-all approach of learning a sipggelictor for each entity can become
prohibitively expensive, both at training and testing time

Our motivation for the present work comes from the obseovathat although the output (label)
space may be very high dimensional, the actual labels aga sftarse. That is, in each image, only
a small number of entities may be present and there may ondydmall amount of ambiguity in
who or what they are. In this work, we consider how this spaiisi the output space, arutput
sparsity eases the burden of large-scale multi-label learning.

Exploiting output sparsity. A subtle but critical point that distinguishes output sfigrsom more
common notions of sparsity (say, in feature or weight vexjt@rthat we are interested in the sparsity
of E[y|«] rather thany. In generalE[y|z] may be sparse while the actual outcogm@ay not €.g.if
there is much unbiased noise); and, vice vegsaay be sparse with probability one Hijly|«] may
have large suppore(g.if there is little distinction between several labels).

Conventional linear algebra suggests that we must prégietrameters in order to find the value of
thed-dimensional vectoE|[y|x] for eachz. A crucial observation — central to the area of compressed
sensing [1] — is that methods exist to recolgy|«] from justO(k log d) measurements whéi{y|z]

is k-sparse. This is the basis of our approach.



Our contributions. We show how to apply algorithms for compressed sensing toukut coding
approach [2]. At a high level, the output coding approaclate® a collection of subproblems of
the form “Is the label in this subset or its complement?”yeslthese problems, and then uses their
solution to predict the final label.

The role of compressed sensing in our application is disfinm its more conventional uses in data
compression. Although we do employ a sensing matrix to ceswptraining data, we ultimately
are not interested in recovering data explicitly compredbés way. Rather, wéearn to predict
compressed label vectgrand then use sparse reconstruction algorithmedover uncompressed
labels from these predictionsThus we are interested in reconstruction accuracy of gtieds,
averaged over the data distribution.

The main contributions of this work are:

1. Aformal application of compressed sensing to predighimblems with output sparsity.

2. An efficient output coding method, in which the number afuieed predictions is only
logarithmic in the number of labels making it applicable to very large-scale problems.

3. Robustness guarantees, in the form of regret transformdm(in general) and a further
detailed analysis for the linear prediction setting.

Prior work. The ubiquity of multi-label prediction problems in domanasging from multiple ob-
ject recognition in computer vision to automatic keyworgding for content databases has spurred
the development of numerous general methods for the tagkapethe most straightforward ap-
proach is the well-known one-against-all reduction [3], this can be too expensive when the num-
ber of possible labels is large (especially if applied topgbever set of the label space [4]). When
structure can be imposed on the label spa&cg. ¢lass hierarchy), efficient learning and prediction
methods are often possible [5, 6, 7, 8, 9]. Here, we focus oiffexeht type of structure, namely
output sparsity, which is not addressed in previous worktédeer, our method is general enough to
take advantage of structured notions of sparsty.group sparsity) when available [10]. Recently,
heuristics have been proposed for discovering structul@dge output spaces that empirically offer
some degree of efficiency [11].

As previously mentioned, our work is most closely relatedh® class of output coding method
for multi-class prediction, which was first introduced ahdwn to be useful experimentally in [2].
Relative to this work, we expand the scope of the approachuiti-tabel prediction and provide
bounds on regret and error which guide the design of codes|oRs based decoding approach [12]
suggests decoding so as to minimize loss. However, it doggroeide significant guidance in the
choice of encoding method, or the feedback between encagitigecoding which we analyze here.

The output coding approach is inconsistent when class#iersised and the underlying problems
being encoded are noisy. This is proved and analyzed in {#i3re it is also shown that using a
Hadamard code creates a robust consistent predictor wheneé to binary regression. Compared
to this method, our approach achieves the same robustnasangees up to a constant factor, but
requires training and evaluating exponentially {)rfewer predictors.

Our algorithms rely on several methods from compressedragnghich we detail where used.

2 Preliminaries

Let X be an arbitrary input space apdc R be ad-dimensional output (label) space. We assume
the data source is defined by a fixed but unknown distributiear & x ). Our goal is to learn a
predictorF : X — Y with low expected’3-errorE, || F(x) — E[y|«]||% (the sum of mean-squared-
errors over all labels) using a setotraining data{ (x;, v;) }7_;.

We focus on the regime in which the output space is very higredsional { very large), but for
any givenz € X, the expected valu&[y|z] of the corresponding label € ) has only a few
non-zero entries. A vector Is-sparsef it has at most: non-zero entries.



3 Learning and Prediction

3.1 Learning to Predict Compressed Labels

Let A : R — R™ be a linear compression function, whene< d (but hopefullym < d). We use
A to compressi(e. reduce the dimension of) the lab@ls and learn a predictafl : X — A()) of
these compressed labels. Sintés linear, we simply represent € R™*¢ as a matrix.

Specifically, given a samplg(z;, y;)},, we form a compressed samgdléx;, Ay;)}7, and then
learn a predictof! of E[Ay|z] with the objective of minimizing thé&-errorE,, | H (z) —E[Ay|xz]||3.

3.2 Predicting Sparse Labels

To obtain a predictoF’ of E[y|x], we compose the predictéf of E[Ay|z] (learned using the com-
pressed sample) with a reconstruction algoriRmR™ — R?. The algorithmR maps predictions
of compressed labels € R™ to predictions of labelg € Y in the original output space. These
algorithms typically aim to find a sparse vectosuch thatdy closely approximates.

Recent developments in the area of compressed sensing raWgcpd a spate of reconstruction
algorithms with strong performance guarantees when thepoeseion functiond satisfies certain
properties. We abstract out the relevant aspects of thegagtees in the following definition.

Definition. AnalgorithmR is avalid reconstruction algorithm for a family of compressfonctions
(Ap € U,,»; R™*? : k € N) and sparsity errosperr : N x RY — R, if there exists a function
f : N — N and constant§’;,C; € R such that: on inpuk € N, A € A, with m rows, and
h € R™, the algorithmR(k, A, h) returns anf (k)-sparse vectoy satisfying

15— yl3 < Ci-|lh— Ay3 + Co - sperr(k, y)

for all y € R?. The functionf is theoutput sparsityof R and the constants; and(C, are theregret
factors

Informally, if the predicted compressed laldé(z) is close toE[Ay|z] = AE[y|z], then the sparse
vectory returned by the reconstruction algorithm should be closE[idz]; this latter distance
||y —E[y|«]||3 should degrade gracefully in terms of the accurackf¢f:) and the sparsity dE[y|z].
Moreover, the algorithm should be agnostic about the syas6iE[y|«] (and thus the sparsity error
sperr(k, Ely|z])), as well as the “measurement noise” (the prediction g(fd(z) — E[Ay|z]||2).
This is a subtle condition and precludes certain reconstru@lgorithm €.g.Basis Pursuit [14])
that require the user to supply a bound on the measuremesd. tdowever, the condition is needed
in our application, as such bounds on the prediction ermr ¢achx) are not generally known
beforehand.

We make a few additional remarks on the definition.
1. The minimum number of rows of matricélse A, may in general depend dn(as well as

the ambient dimensiod). In the next section, we show how to construct sdahith close
to the optimal number of rows.

2. The sparsity errasperr(k, ) should measure how poorly ¢ R? is approximated by a
k-sparse vector.

3. A reasonable output sparsifi(k) for sparsity levelk should not be much more thdn
e.g.f(k) = O(k).

Concrete examples of valid reconstruction algorithmsn@lith the associatedy, sperr, etc.) are
given in the next section.

4 Algorithms

Our prescribed recipe is summarized in Algorithms 1 and 2gie some examples of compression
functions and reconstruction algorithms in the followindpsections.



Algorithm 1 Training algorithm Algorithm 2 Prediction algorithm

parameters sparsity levelk, compression parameters sparsity levelk, compression
function A € A, with m rows, regression  function A € A, with m rows, valid re-

learning algorithmi construction algorithn for A,
input training dataS ¢ & x R¢ input regressorsi = [h,...,hy], test
fori=1,...,mdo pointz € X
hi — L({(z, (Ay):) : (z,y) € S}) output 7 = R(k, A, [h1 (), ..., hm(2)])
end for
output regressors! = [hy, ..., hy,]

Figure 1: Training and prediction algorithms.

4.1 Compression Functions

Several valid reconstruction algorithms are known for coespion matrices that satisfyrestricted
isometry property

Definition. A matrix A € R™*? satisfies theék, §)-restricted isometry property(k, §)-RIP), § €
(0,1),if (1 —8)||z]|2 < ||Az|]3 < (1 + 0)||z||2 for all k-sparser € RY.

While some explicit constructions ¢k, §)-RIP matrices are knowre(g.[15]), the best guarantees
are obtained when the matrix is chosen randomly from an gpiate distribution, such as one of
the following [16, 17].

e All entries i.i.d. GaussiatV (0, 1/m), with m = O(klog(d/k)).

e All entries i.i.d. BernoulliB(1/2) over{+1/y/m}, with m = O(klog(d/k)).

e m randomly chosen rows of thé x d Hadamard matrix ove{+1/\/m}, with m =
O(klog® d).

The hidden constants in the bignotation depend inversely @nand the probability of failure.

A striking feature of these constructions is the very mildeledence ofn on the ambient dimension
d. This translates to a significant savings in the number afiag problems one has to solve after
employing our reduction.

Some reconstruction algorithms require a stronger gueeanf boundedcoherenceu(A) <
O(1/k), whereu(A) defined as

— TA). .
p(A) = max |(A°A),

VAT A)iil[(ATA); 51
It is easy to check that the Gaussian, Bernoulli, and Hadaibpased random matrices given
above have coherence bounded @y, /(logd)/m) with high probability. Thus, one can take

m = O(k®logd) to guaranted /k coherence. This is a factdr worse than what was needed
for (k, §)-RIP, but the dependence dnis still small.

4.2 Reconstruction Algorithms

In this section, we give some examples of valid reconstaatigorithms. Each of these algorithm
is valid with respect to the sparsity error given by
1
sperr(k, y) = [ly = yam |5 + 1y = yam I

wherey,.;, is the besk-sparse approximation gf (i.e. the vector with just thé: largest (in mag-
nitude) coefficients of).

The following theorem relates reconstruction quality t@m@ximate sparse regression, giving a
sufficient condition for any algorithm to be valid for RIP miegs.



Algorithm 3 Prediction algorithm witlR = OMP

parameters sparsity levek, compression functiod = [a4] ... |a4] € Ay with m rows,
input regressorg? = [hq, ..., hy), test pointr € X
h « [hi(z),..., hm(x)]"  (predict compressed label vector)
§—0,J—0,r—h
fori=1,...,2kdo
jx < argmax; [r " a;|/||ajll2  (column of A most correlated with residua)
J—JU{j.} (addj. to set of selected columns)
77— (A))th, gy — 0 (least-squares restricted to columns/in
r+«— h— Ay (update residual)
end for
output 7

Figure 2: Prediction algorithm specialized with Orthogddatching Pursuit.

Theorem 1. Let A, = {(k + f(k),d)-RIP matrices for some functiorf : N — N, and let4 € Ay,
havem rows. If for anyh € R™, a reconstruction algorithnR returns anf(k)-sparse solution
y = R(k, A, h) satisfying

Ay — h||2 < inf C|| Ay — b2,

147 = hllz < inf, Cll Ay = P2

then it is a valid reconstruction algorithm fo4,, andsperr given above, with output sparsifyand
regret factorsC; = 2(1 ++v/C)?/(1 — 6) andCy = 4(1 + (1 +VC)/(1 — §))?.

Proofs are deferred to Appendix B.

Iterative and greedy algorithms. Orthogonal Matching Pursuit (OMP) [18], FoBa [19], and
CoSaMP [20] are examples of iterative or greedy reconstnualgorithms. OMP is a greedy
forward selection method that repeatedly selects a newroolof A to use in fittingh (see Al-
gorithm 3). FoBa is similar, except it also incorporateskveard steps to un-select columns that are
later discovered to be unnecessary. CoSaMP is also simifaMP, but instead selects larger sets
of columns in each iteration.

FoBa and CoSaMP are valid reconstruction algorithms for Ri&rices (8k,0.1)-RIP and
(4k,0.1)-RIP, respectively) and have linear output sparsity #nd2k). These guarantees are ap-
parent from the cited references. For OMP, we give the fallgvguarantee.

Theorem 2. If u(A) < 0.1/, then afterf (k) = 2k steps of OMP, the algorithm returfgsatisfying

145 — hll3 < 23]l Ay — hlI3 vy € R

This theorem, combined with Theorem 1, implies that OMP igviar matricesA with p(A) <
0.1/k and has output sparsiff(k) = 2k.

¢, algorithms. Basis Pursuit (BP) [14] and its variants are based on findiegriinimum¢; -norm
solution to a linear system. While the basic form of BP is ulited for our application (it requires
the user to supply the amount of measurement ditdor — 1 ||2), its more advanced path-following
or multi-stage variants may be valid [21].

5 Analysis

5.1 General Robustness Guarantees
We now state our main regret transform bound, which follawsediately from the definition of a
valid reconstruction algorithm and linearity of expeatati

Theorem 3(Regret Transform)Let R be a valid reconstruction algorithm fgfrA;, : £ € N} and
sperr : N x R? — R. Then there exists some constafitsand C;, such that the following holds.



Pick anyk € N, A € A, withm rows, andH : X — R™. LetF : X — R? be the composition of
R(k,A,-)andH,i.e. F(z) = R(k, A, H(z)). Then

E.|F(z) —E[yle]|3 < C1-EollH(z) — E[Ay|a]|3 + Co - sperr(k, E[y|a]).
The simplicity of this theorem is a consequence of the choefionposition of the learned predictors
with the reconstruction algorithm meeting the formal sfieafions described above.

In order compare this regret bound with the bounds afforde8dmsitive Error Correcting Output
Codes (SECOC) [13], we need to reldte|| H (x) — E[Ay|x]||3 to the average scaled mean-squared-
error over all induced regression problems; the error i¢edchy the maximum differencé; =
maxyey(Ay); —min,(Ay), between induced labels:

F= L3 E, (H(xn - E[(AW])%

L

In k-sparse multi-label problems, we haVe= {y € {0,1}? : |ly|lo < k}. In these terms, SECOC
can be tuned to yielll, | F(x) — E[y|x]||3 < 4k? - 7 for generalk.

For now, ignore the sparsity error. For simplicity, létc R™>¢ with entries chosen i.i.d. from the
Bernoulli B(1/2) distribution over{+1/\/m}, wherem = O(klogd). Then for anyk-sparsey,
we have|| Ay|« < k//m, and thusl; < 2k/./m for eachi. This gives the bound

C1 B, | H(z) - E[Aylz]ll; < 4Cy-k* -7,

which is within a constant factor of the guarantee affordgdSECOC. Note that our reduction
induces exponentially (i) fewer subproblems than SECOC.

Now we consider the sparsity error. In the extreme case- d, E[y|z] is allowed to be fully

dense k = d) andsperr(k,E[y|z]) = 0. Whenm = O(klogd) < d, we potentially incur an
extra penalty isperr(k, E[y|x]), which relates how faE[y|z] is from beingk-sparse. For example,
supposéE[y|z] has small,, norm for0 < p < 2. Then even ifE[y|z] has full support, the penalty
will decrease polynomially ik =~ m/ log d.

5.2 Linear Prediction

A danger of using generic reductions is that one might creg®blem instance that is even harder
to solve than the original problem. This is an oft cited isst#h using output codes for multi-
class problems. In the case of linear prediction, howetiergainger is mitigated, as we now show.
Suppose, for instance, there is a perfect linear predidtd[gx], i.e. E[y|z] = BTz for some
B € RP*? (hereX = RP). Then it is easy to see thaf = BA' is a perfect linear predictor of
E[Ay|x]:

H'z = AB"xz = AE[y|lz] = E[Ay|z].
The following theorem generalizes this observation to irfgm linear predictors for certain well-
behavedA.

Theorem 4. Supposet’ C RP. Let B € RP*? be a linear function with
2
E, ||BTx — E[y|x}||2 = €.

Let A € R™*4 have entries drawn i.i.d. fron(0,1/m), and letHH = BAT. Then with high
probability (over the choice ofl),

E.|H "z — AE[yl2]|3 < (1+0(1/vm))e.
Remark 5. Similar guarantees can be proven for the Bernoulli-basetfices. Note thatl does not
appear in the bound, which is in contrast to the expectedtsglemrm of A: roughly 1+O(\/d/m).

Theorem 4 implies that the errors afy linear predictor are not magnified much by the compres-
sion function. So a good linear predictor for the originafdem implies an almost-as-good linear
predictor for the induced problem. Using this theorem tbgewith known results about linear
prediction [22], it is straightforward to derive sample qaexity bounds for achieving a given error
relative to that of the best linear predictor in some classe Bound will depend polynomially ik

but only logarithmically ind. This is cosmetically similar to learning bounds for featefficient
algorithms €.9.[23, 22]) which are concerned with sparsity in the weightteeaather than in the
output.



6 Experimental Validation

We conducted an empirical assessment of our proposed i@docttwo labeled data sets with large
label spaces. These experiments demonstrate the felgsitbiiur method — a sanity check that the
reduction does in fact preserve learnability — and compidfiereint compression and reconstruction
options.

6.1 Data

Image datal The first data set was collected by the ESP Game [24], an oghnge in which
players ultimately provide word tags for a diverse set of \imeages.

The set contains nearly8000 images, with abou22000 unique labels. We retained just theo0
most frequent labels: the least frequent of these octutanes in the data, and the most frequent
occurs about 2000 times. Each image contains about four labels on average. sa& half of the
data for training and half for testing.

We represented each image as a bag-of-features vector inmemsimilar to [25]. Specifically, we
identified 1024 representative SURF features points [26] frofthx 10 gray-scale patches chosen
randomly from the training images; this partitions the gpatimage patches (represented with
SUREF features) into Voronoi cells. We then built a histogfameach image, counting the number
of patches that fall in each cell.

Text data.? The second data set was collected by Tsoumakas et al. [I]ded . i ci 0. us, a
social bookmarking service in which users assign deseeéxtual tags to web pages.

The set contains abodt000 labeled web page an@R3 unique labels. The least frequent label
occurs21 times and the most frequent occurs alm@si0 times. Each web page is assigned
labels on average. Again, we used half the data for trainiighalf for testing.

Each web page is represented as a boolean bag-of-words, weithothe vocabulary chosen using a
combination of frequency thresholding agé feature ranking. See [11] for details.

Each binary label vector (in both data sets) indicates thel$zof the corresponding data point.

6.2 Output Sparsity

We first performed a bit of exploratory data analysis to getrse of how sparse the target in our
data is. We computed the least-squares linear regréssoR?*? on the training data (without any

output coding) and predicted the label probabilifigs) = BTz on the test data (clipping values
to the rangd0, 1]). Usingp(z) as a surrogate for the actual tar@8y|«], we examined the relative

3 error of p and its bestk-sparse approximation(k, p(z)) = Zf:kHﬁ(i)(x)Q/Hﬁ(z)H%, where
py(z) > ... > Pray(x).

ExaminingE.¢(k, p(x)) as a function of, we saw that in both the image and text data, the fall-
off with & is eventually super-polynomial, but we are interested éltehavior for smalk where it
appears polynomial~—" for somer. Aroundk = 10, we estimated an exponent@®&0 for the image
data and).55 for the text data. This is somewhat below the standard of wehednsidered sparse
(e.g.vectors with small;-norm showk~! decay). Thus, we expect the reconstruction algorithms
will have to contend with the sparsity error of the target.

6.3 Procedure

We used least-squares linear regression as our base atgarithm, with no regularization on the
image data and with,-regularization with the text data (= 0.01) for numerical stability. We did
not attempt any parameter tuning.

*ht t p: / / hunch. net / ~I ear ni ng/ ESP- | mageSet . tar. gz
2http://mkd. csd. auth. gr/mul til abel . htm



The compression functions we used were generated by sgjectiandom rows of the(024 x 1024
Hadamard matrix, forn € {100, 200, 300,400}. We also experimented with Gaussian matrices;
these yielded similar but uniformly worse results.

We tested the greedy and iterative reconstruction algosthescribed earlier (OMP, FoBa, and
CoSaMP) as well as a path-following version of Lasso basedARS [21]. Each algorithm was
used to recover &-sparse label vectag® from the predicted compressed labié(x), for k =
1,...,10. We measured thé distance||z* — y||2 of the prediction to the true test labgl In
addition, we measured the precision of the predicted stigtoarious values of using thelo-
sparse label prediction. That is, we ordered the coeffisiefieachl0-sparse label prediction'’

by magnitude, and measured the precision of predicting teificoordinates supp(ﬂ(lﬁk)) N

supp(y)|/k. Actually, fork > 6, we used;?* instead ofy*°.

We used correlation decoding (CD) as a baseline method,igs istandard decoding method for
ECOC approaches. CD predicts using thekamordinates imd T H (z), ordered by magnitude. For
mean-squared-error comparisons, we used the least-scaspeoximation off («) using these:
columns ofA. Note that CD is not a valid reconstruction algorithm when< d.

6.4 Results

As expected, the performance of the reduction, using argnsgauction algorithm, improves as the
number of induced subproblems is increased (see figures in Appendix A) Whens small and

A ¢ Ag, the reconstruction algorithm cannot reliably choése K coordinates, so its perfor-
mance may degrade after this point by over-fitting. But whendompression functiod is in Ax

for a sufficiently largek, then the squared-error decreases as the output spaisityeases up to
K. Note the fact that precision-atdecreases dsincreases is expected, as fewer data will have at
leastk correct labels.

All of the reconstruction algorithms at least match or oetfprmed the baseline on the mean-
squared-error criterion, except when= 100. When A has few rows, (1A € Ax only for very
small K, and (2) many of its columns will have significant correlatidn this case, when choosing
k > K columns, it is better to choose correlated columns to aveet-titting. Both OMP and
FoBa explicitly avoid this and thus do not fare well; but ChBaLasso, and CD do allow selecting
correlated columns and thus perform better in this regime.

The results for precision-dt-are similar to that of mean-squared-error, except that sihgacorre-
lated columns does not necessarily help in the smaiégime. This is because the extra correlated
columns need not correspond to accurate label coordinates.

In summary, the experiments demonstrate the feasibilidyrabustness of our reduction method for
two natural multi-label prediction tasks. They show thadictions of relatively few compressed

labels are sufficient to recover an accurate sparse lab&ryend as our theory suggests, the ro-
bustness of the reconstruction algorithms is a key facttrair success.
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