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Abstract

When learning models that are represented in matrix fornfer@ng a low-rank
constraint can dramatically improve the memory and run tworplexity, while
providing a natural regularization of the model. Howeveziva approaches for
minimizing functions over the set of low-rank matrices aither prohibitively
time consuming (repeated singular value decompositiorhefmatrix) or nu-
merically unstable (optimizing a factored representatibthe low rank matrix).
We build on recent advances in optimization over manifotog] describe an it-
erative online learning procedure, consisting of a gradstep, followed by a
second-orderetraction back to the manifold. While the ideal retraction is hard to
compute, and so is the projection operator that approxsngteve describe an-
other second-order retraction that can be computed effigievith run time and
memory complexity ofO ((n + m)k) for a rank% matrix of dimensionm x n,
given rank-one gradients. We use this algorithm, LORETAlegrn a matrix-
form similarity measure over pairs of documents represkaschigh dimensional
vectors. LORETA improves the mean average precision oversaiye- aggres-
sive approach in a factorized model, and also improves o¥elt mmodel trained
over pre-selected features using the same memory requitemeORETA also
showed consistent improvement over standard methods ige (4600 classes)
multi-label image classification task.

1 Introduction

Many learning problems involve models represented in mé&trin. These include metric learning,
collaborative filtering, and multi-task learning wheretaks operate over the same set of features.
In many of these models, a natural way to regularize the msdelimit the rank of the correspond-
ing matrix. In metric learning, a low rank constraint alloiwdearn a low dimensional representation
of the data in a discriminative way. In multi-task problerwsy rank constraints provide a way to
tie together different tasks. In all cases, low-rank magican be represented in a factorized form
that dramatically reduces the memory and run-time comp@filearning and inference with that
model. Low-rank matrix models could therefore scale to lesdbstantially many more features
and classes than with full rank dense matrices.

As with many other problems, the rank constraint is non-eanand in the general case, minimizing
a convex function subject to a rank constraint is NP-hard.[Als a result, two main approaches have
been commonly used. Sometimes, a matrixc R™*" of rankk is represented as a product of two
low dimension matriced” = ABT, A € R"**, B € R™** and simple gradient descent techniques
are applied to each of the product terms separately [3]. rRequojected gradient algorithms can
be applied by repeatedly taking a gradient step and praogdiack to the manifold of low-rank
matrices. Unfortunately, computing the projection to timainifold becomes prohibitively costly for
large matrices and cannot be computed after every gradiegmt s

*also at the Gonda Brain Research Center, Bar llan University
1Some special cases are solvable (notably, PCA), relying mainly onlaingalue decomposition [2] and
semi-definite programming techniques. These methods scale poorlgéosizale tasks.



Figure 1: A two step procedure for com-
puting a retracted gradient. The first step
computes the Riemannian gradi€r(the
projection of the gradient onto the tan-
gent spacel, M), yielding '3 =

zt + n'VL(2"). The second step com-
putes the retraction onto the manifold
il = R, (€Y).

R (1)

In this paper we propose new algorithms for online learninghe manifold of low-rank matrices,
which are based on an operation caltettaction. Retractions are operators that map from a vector
space that is tangent to the manifold, into the manifold. yTihelude the projection operator as a
special case, but also include other retractions that carobmputed dramatically more efficiently.
We use second order retractions to develop LORETA — an oaligerithm for learning low rank
matrices. It has a memory and run time complexityXof(n + m)k) when the gradients have rank
one, a case which is relevant to numerous online learninigigmts as we show below.

We test Loreta in two different domains and learning tasksst,Fwe learn a bilinear similarity
measure among pairs of text documents, where the numbeatfrés (text terms) representing
each document could become very large. Loreta performéertiein other techniques that operate
on a factorized model, and also improves retrieval pregibip 33% as compared with training a
full rank model over pre-selected most informative featuresing comparable memory footprint.
Second, we applied Loreta to image multi-label ranking,abfgm in which the number of classes
could grow to millions. Loreta significantly improved oveillfrank models, using a fraction of the
memory required. These two experiments suggest that lakw-oatimization could become very
useful for learning in high-dimensional problems.

This paper is organized as follows. We start with an intréidicto optimization on manifolds,
describing the notion of retractions. We then derive our-tewk online learning algorithm, and test
it in two applications: learning similarity of text docuntepand multi-label ranking for images.

2 Optimization on Riemannian manifolds

The field of numerical optimization on smooth manifolds hdsamced significantly in the past
few years. We start with a short introduction to embeddedifolais, which are the focus of
this paper. Anembedded manifold is a smooth subset of an ambient sp& For instance the
set{x : ||z]]2 = 1,x € R"}, the unit sphere, is an — 1 dimensional manifold embedded in
dimensional spacR™. Here we focus on the manifold ddw-rank matrices, namely, the set of
n x m matrices of rank wherek < m, n. Itis an(n + m)k — k* dimensional manifold embedded
in R™*™, which we denote\M;"™. Embedded manifolds inherit many properties from the antbie
space, a fact which simplifies their analysis. For examgle,Riemannian metric for embedded
manifolds is simply the Euclidean metric restricted to themnifold.

Motivated by online learning, we focus here on developintpalsastic gradient descent procedure
n,m

to minimize a loss functiolf over the manifold of low-rank matrice$t,"",
min L(z) st zeMP™ . Q)

To illustrate the challenge in this problem, consider a $ngtochastic gradient descent algorithm
(Fig. 1). At every step of the algorithm, a gradient step update také&sz outside of the manifold
M and has to be mapped back onto the manifold. The most commppingaoperation is the
projection operation, which, given a poim”% outside the manifold, would find the closest point
in M. Unfortunately, the projection operation is very expeediv compute for the manifold of
low rank matrices, since it basically involves a singuldueadecomposition. Here we describe a
wider class of operations callgétractions, that serve a similar purpose: they find a point on the
manifold that is in the direction of the gradient. Importgnive describe a specific retraction that
can be computed efficiently. Its runtime complexity depeods4 quantities: the model matrix
dimensionsn andn; its rankk; and the rank of the gradient matrix, The overall complexity is

O ((n+m)(k +r)?), andO ((n 4+ m)k) for rank-one gradients, which are a very common case.



To explain how retractions are computed, we first descrilentition of atangent space and the
Riemannian gradient of a function on a manifold.

Riemannian gradient and the tangent space

Each pointz in an embedded manifold1 has a tangent space associated with it, den®ieti
(see Fig. 1). The tangent space is a vector space of the samemglon as the manifold that can
be identified in a natural way with a linear subspace of theiantlspace. It is usually simple to
compute the linear projectioR, of any point in the ambient space onto the tangent spade.

Given a manifoldM and a differentiable functiod : M — R, the Riemannian gradient VL(x)

of £ on M at a pointx is a vector in the tangent spagg M. A very useful property of embedded
manifolds is the following: given a differentiable funatig’ defined on the ambient space (and thus
on the manifold), the Riemannian gradientfoét pointz is simply the linear projectio®, of the
ordinary gradient off onto the tangent spacE. M. An important consequence follows in case
the manifold represents the set of points obeying a ceristcaint. In this case the Riemannian
gradient off is equivalent to the ordinary gradient of thfieminus the component which is normal
to the constraint. Indeed this normal component is exabycomponent which is irrelevant when
performing constrained optimization.

The Riemannian gradient allows us to compu‘té% = 2! + 'V L(z), for a given iterate point*
and step size®. We now examine how'*2 can be mapped back onto the manifold.

Retractions

Intuitively, retractions capture the notion of "going along a straight line” on the if@d. The
mathematically ideal retraction is called tegonential mapping: it maps the tangent vectgr €
T,. M to a point along a geodesic curve which goes thraughthe direction of. Unfortunately, for
many manifolds (including the low-rank manifold considihere) calculating the geodesic curve is
computationally expensive. A major insight from the fieldRi€mannian manifold optimization is
that using the exponential mapping is unnecessary sinceutationally cheaper retractions exist.

Formally, for a pointr in an embedded manifold1, a retraction is any functioR,, : Tx M — M
which satisfies the following two conditions [4]: (1) Centey: R, (0) = x. (2) Local rigidity: the
curve defined byy (1) = R, (7€) satisfiesy:(0) = &. It can be shown that any such retraction
approximates the exponential mapping to a first order [@dcond-order retractions, which ap-
proximate the exponential mapping to second order aratidve to satisfy the following stricter

conditions: P, (de‘”T(;g) IT:0> = 0, for all ¢ € T, M, whereP, is the linear projection from the

ambient space onto the tangent spagd1. When viewed intrinsically, the curvB,(7¢) defined

by a second-order retraction has zero acceleration at poimamely, its second order derivatives
are all normal to the manifold. The best known example of asg@rder retraction onto embed-

ded manifolds is the projection operation [5]. Importangisojections are viewed here as one type
of a second order approximation to the exponential mappifich can be replaced by any other

second-order retractions, when computing the projecsdaa costly.

Given the tangent space and a retraction, we can now definenaaRnian gradient descent step for
the lossC at pointz? € M:

(1) Gradient step: Computer'*2 = 2t + ¢, with & = VL(2!) = P, (VL(x")), whereV L (z?)

is the ordinary gradient of in the ambient space.

(2) Retraction step: Computer!*t! = R, (—n'&t), wheren! is the step size.

For a proper step size, this procedure can be proved to heakdonvergence for any retraction [4].

3 Onlinelearning on the low rank manifold

Based on the retractions described above, we now presentlizne @lgorithm for learning low-
rank matrices, by performing stochastic gradient descanthe manifold of low rank matrices.

At every iteration the algorithm suffers a loss, and perfoarRiemannian gradient step followed
by a retraction to the manifold ;™. Section 3.1 discusses general online updates. Section 3.2
discusses the very common case where the online updateiadyradient of rank = 1.

In what follows, a lowercase denotes an abstract point on the manifold, lowercase Gedtekd
like £ denote an abstract tangent vector, and uppercase Ron&ms léke A denote concrete matrix



representations as kept in memory (takimg« m float numbers to store). We intermix the two
notations, as i = AZ, when the meaning is clear from the context. The set &f k matrices of
rankk is denotedR™**.

3.1 Thegeneral LORETA algorithm

We start with a Lemma that gives a representation of the tatrgmacel’x M, extending the con-
structions given in [6] to the general manifold of low-ranlkatmices. The proof is given in the
supplemental material.
Lemmal. Letz € M}»™ have a (non-unique) factorization z = ABT, where A € R?"**, B €
R™k Let A, € R"*("=F) and B, € R™*(m—k) pe the orthogonal complements of A and B
respectively, such that ATA =0, BTB =0, AT A, = I,,_y, B B, = I,,,_x. Thetangent space
to M, atzis

M NlT] [BT

TXM:{[A Al [Nz o | BT ]:MGRka,NlGR(m_k)Xk,NQGR("_k)Xk} )

Let¢ € M;"™ be atangent vector to = AB”. From the characterization above it follows that
¢ can be decomposed in a unique manner into three orthogomglarents:¢ = ¢° + ¢ + ¢F,
where¢® = AMBT, ¢ = ANT'BT and¢f” = A N, B”. In online learning we are repeatedly
given a rankr gradient matrixZ, and want to compute a step @vt;"" in the direction ofZ. As

a first step we wish to find its projectioR, (Z) onto the tangent space. Specifically, we wish to
find the three matriced/, N; and N, such thatP, (Z) = AM BT + AN BT + A, N, BT. Since
we assumel is of full column rank, its pseudo-inversé’ obeysAf = (ATA)_1 AT, The matrix
projecting ontaA’s columns, denote®,, is exactly equal tol AT. We can similarly definé, , ,Pg
andPg, . A straightforward computation shows that for a given nxa#fj we haveM = A'Z BT,

Ny = BTZT AT, Ny = AT ZBT, yielding¢® = PsZPg, §f = PaZPp,,¢F = Pa, ZPp.

The following theorem defines the retraction that we use. roef is given in the supplemental
material.

Theorem 1. Letz € M}"™, 2 = ABT,and 2" = BT AT = B(BTB)~1(AT A)~' AT (thisholds
since we assume A and B are of full column rank). Let & € T,M"™, & = &5 + ¢ +¢F, as
described above, and let

1 1 1

wi =+ €+ g - €l - Sglalet ®)
1 1 1

wy =@+ 58 & — 2€T¢” — Sl

The mapping R, (£) = wizTw, isa second order retraction froma neighborhood ©,, C T, M}"™
to M.

We now have the ingredients necessary for a Riemannianagttclyradient descent algorithm.

Algorithm 1: Naive Riemannian stochastic gradient descent

Input: MatricesA € R!**, B € RI"* sit.x = AB”. MatricesG, € R"*", G, € R™*" st. G1G3 =
—né = —nVL(z) € R™™™, whereVL(z) is the gradient in the ambient space and 0 is the step size.
Output: MatricesZ, € R?**, Z, e RT"*" such thatZ, Z = R.(—n¢).

Compute: matrix dimension
AT = (ATA)"'AT, BT = (B"B)'B” kxn, kxm
A, B, =orthogonal complements of, B nx(n-—=~k), mx(m-—k)
M = A'G1G3 BT kxk
N1 = BIGQG’{ATT, N2 = AEGngBTT (m — k) X k, (’I’L — k) X k
Zy = (A(In+ §M — §M?) + A N, (I — 3 M)) nxk
Zy=(B(Ix+ 3M" = L(M")*) + BNy (I, — $M™)) mx k

Given a gradient in the ambient spa\lz’él(x), we can calculate the matric@$, N; and N, which
allow us to represent its projection onto the tangent spawefurthermore allow us to calculate the
retraction. The procedure is outlined in algorithm 1, witime rearranging and term collection.



Algorithm 1 explicitly computes and stores the orthogomahplement matriced ;| andB , which

in the low rank casé < m,n, have sizeO(mn) as the originalz. To improve the memory
complexity, we use the fact that the matricés and B, always operate with their transpose. Since
they are orthogonal, the matrix; A” is a projection matrix, one which we denoted earliehy,
and likewise forB,. Because of the orthogonal complementarity, these piojechatrices are
equal tol,, — P4 andl,, — Pp respectively. We use this identity to reformulate the athar such
that only matrices of size at masiax(n, m) x k ormax(n, m) x r are kept in memory. The runtime
complexity of Algorithm 2 can be easily computed based orrimatultiplications complexity, and
equalsO ((n +m)(k +7)?).

Algorithm 2 : General Riemannian stochastic gradient descent
Input and Output: As in Algorithm 1

Compute: matrix dimension
AT = (ATA)7'AT, B'=(B"B)"'BT Exn, kxm
A=A".G,, B=B'-G, Exr, kxr
ProjAG:A~A nxr
Q:ET-A rTXT
A% = —JProjAG + 3ProjAG -Q+ G1 — 3G1-Q nxr
Zi=A+ A% BT nxk
GBproj = (GQTB) s rXm
BA :—%GBproj+%Q~GBproj+G2T—%QvGQT rXm
zr =BT +A.B* Exm

Algorithm 3, Loreta-1: Rank-one Riemannian stochastic gradient descent

Input: MatricesA € R™* B e R™* stz = ABT. MatricesA' and B, the pseudo-inverses of and
B respectively. Vectoré; € R™*', G, € R™*" st. G1GY = —né = —nVL(x) € R™™, whereV L (x)

is the gradient in the ambient space and 0 is the step size.

Output: MatricesZ; € R™* 7, c R™F st Z17% = R.(—ng). MatriceleT andzg, the pseudo-inverses
of Z, andZ, respectively.

Compute: matrix dimension
A=A".G,B=B" G, kx1
ProjAG:A~A nxl1
Q=BT A 1x1
AR = ProjAG (f%+%Q)+G1(1f%Q) nx1
Zy=A+ A" . BT nxk
GBproj = (GQTB) - Bt 1xm
B? = GBproj (—%—I—%Q)—i—GQT(l—% ) 1xm
zI =BT+ A.B» kxm
ZI = rank_one_pseudoinverse_update(A, AT, A®, B) kxn
Z;r = rank_one_pseudoinverse_update(B, Bf, B®, A) kxm

3.2 LORETA with rank-one gradients

In many learning problems, the gradient matrix requiredafgradient step update has a rank of one.
This is the case for example, when the matrix mddfedicts as a bilinear form on two vectogsand

¢, and the loss is a linear function pf Wq (as in [7, 8], and Sec. 5.1). In that case, the gradient
is the rank-one, outer product matxq”. As another example, consider the case of multitask
learning, where the matrix mod&l" operates on a vector inppt and the loss is the squared loss
between the multiple predictio®p and the true labelg: |Wp — ql|?. The gradient of the loss

is (Wp — q) pT, which is again a rank-one matrix. We now show how to redueestimplexity of
each iteration to be linear in the model ralnkwhen the rank of the gradient matnixs one.

Given rank-one gradients & 1), the most computationally demanding step in Algorithm this
computation of the pseudo-inverse of the matridesnd B, takingO(nk?) andO(mk?) operations.
All other operations ar®(max(n, m)k) at most. For = 1 the outputsZ; andZ, become rank-one
updates of the input matricesand 3. This enables us to keep the pseudo-inverseand Bt from
the previous round, and perform a rank-one update to thdlowiog a procedure developed by [9].



This procedure is similar to the better known Sherman-Moniformula for the inverse of a rank-
one perturbed matrix, and its computational complexitydiorn x & matrix is O(nk) operations.
Using that procedure, we derive our final algoritiroreta-1, the rank-one Riemannian stochastic
gradient descent. Its overall time and space complexitpatieO((n + m)k) per gradient step.

The memory requirement of Loreta-1 is abdut: (assumingn = n), since it receives four input

matrices of sizevk (A, B, AT, BT) and assuming it can compute the four outputs, (7, ZI, Z2T),
in-place while destroying previously computed terms.

4 Related work

A recent summary of many advances in the field of optimizadiomanifolds is given in [4]. More
specific to the field of low rank matrix manifolds, some worls lieen done on the general problem
of optimization with low rank positive semi-definite (PSDatrices. These include [10] and [6]; the
latter introduced the retraction for PSD matrices which wiereded here to general low-rank matri-
ces. The problem of minimizing a convex function over theoébw rank matrices, was addressed
by several authors, including [11], and [12] which also ¢édess additional affine constraints, and
its connection to recent advances in compresses sensiegndim tools used in these works are the
trace norm (sum of singular values) and semi-definite prograng. See also [2].

More closely related to the current paper are the works byskatlal. [13] and Meka et al. [14]. The
first deals with learning low rank PSD matrices, and usesahk-preserving log-det divergence and
clever factorization and optimization in order to derivewgrate rule with runtime complexity of
O(nk?) for ann x n matrix of rankk. The second uses online learning in order to find a minimal
rank square matrix under approximate affine constraint®e algorithm does not directly allow a
factorized representation, and depends crucially on aactet component, which typically requires
to compute an SVD. Multi-class ranking with a large numbefieatures was studied in [3].

5 Experiments

We tested Loreta-1 in two learning tasks: learning a sititjlaneasure between pairs of text docu-
ments using the 20-newsgroups data collected by [15], ardilgy to rank image label annotations
based on a multi-label annotated set, using thegyenet dataset [16F.

5.1 Learningsimilarity on the 20 Newsgroups data set

In our first set of experiments, we looked at the problem offlieay a similarity measure between
pairs of text documents. Similarity learning is a well stdliproblem, closely related to metric
learning (see [17] for a review). It has numerous applicetim information retrieval such agiery
by example, and finding related content on the web.

One approach to learn pairwise relations is to measure mhiéasity of two documentgp, q € R"
using a bilinear formSy (p,q) = p’ Wq parametrized by a modél/’ € R"*". Such models
can be learned using standard online methods [8], and werensto achieve high precision. Un-
fortunately, since the number of parameters growa%asstoring the matri¥¥” in memory is only
feasible for limited feature dimensionality. To handlegkr vocabularies, like those containing all
textual terms found in a corpus, a common approach is toglestsa subset of the features and train
a model over the low dimensional data. However, such pre&ssicg may remove crucial signals in
the data even if features are selected in a discriminative wa

To overcome this difficulty, we used Loreta-1 to learn a rankarametrization of the modél’,
which can be factorized a§’ = AB”, where4, B € R"**. In each of our experiments, we
selected a subset offeatures, and trained a rakkmodel. We varied the number of featuresnd
the rank of the matriX so as to use a fixed amount of memory. For example, we used al fank
model with50 K features, and a rankd model with10K features.

Similarity learning with Loreta-1. We use an online procedure similar to that in [7, 8]. At each

round, three instances are sampled: a query documeantd two documentp; andp-, such that

p1 is known to be more similar tq thatp,. We wish that the model assigns a higher similarity

score to the paifq, p;) than the pairg, p2), hence use the online ranking hinge loss defined as

lw(d,p1,P2) = [1 — Sw(q,p1) + Sw(q, p2)],-

2Matlab code for Loreta-1 can be provided upon request.



Data preprocessing and feature selection. We used the 20 newsgroups data set (peo-
ple.csail.mit.edu/jrennie/20Newsgroups), containi@g2sses with approximately 1000 documents
each. We removed stop words but did not apply stemming. Véetesl features that conveyed high
information about the identity of the class (over the tnagnset) using thénfogain criterion [18].

The selected features were normalized usfrdf, and then represented each document as a bag of
words. Two documents were considered similar if they shdredame class label.

Experimental procedure and evaluation protocol. The 20 newsgroups site proposes a split of
the data into train and test sets. We repeated splitting &stibased on the sizes of the proposed
splits (a train / test ratio of 65% / 35%). We evaluated therled similarity measures using a
ranking criterion. We view every documedjtin the test set as a query, and rank the remaining test
documentsp by their similarity scoreg” W p. We then compute the precision (fraction of positives)
at the topr ranked documents. We further compute thean average precision (mAP), a widely
used measure in the information retrieval community, wiaiebrages over all values of

Comparisons. We compared Loreta with the following approach@3.A direct gradient descent

(GD) similar to [3]. The model is represented as a productofinatricesiV = AB”. Stochastic
gradient descent steps are computed over the factand B, for the same loss used by Loreta
lw(q,p1,p2). The step size) was selected using cross validation. The GD steps 4ig;, =
A+nq(p1 —p2)? B, andB,c., = A+n(p1—p2)q’ A. (2) Iterative Passive-Aggressive (PA). We
found the above GD procedure to be very unstable, oftengtise models to diverge. We therefore
used arelated online algorithm from the family of passiggrassive algorithms [19]. We iteratively
optimize overA given a fixedB and vice versa. The optimization is a tradeoff between miiiing
the losdyy, and limiting how much the models change at each iteratibe. Steps size for updating

A is computed to be, = max(%,C), andnp = max(%,(]). C

is a predefined parameter controlling the maximum magnitidbe step size. This procedure is
numerically more stable because of the normalization byntirens of the matrices multiplied by
the gradient factors(3) Naive Passive-Aggressive (PA v2) This method is similar to the iterative

PA above, with the step size computed as with unfactorediceaty = max(%, ).

(4) Full rank similarity learning models. We compared with two online metric learning methods,
LEGO [20] and OASIS [8]. Both algorithms learn a full (norcfarized) model, and were run with
n = 1000, in order to be consistent with the memory constraint of tae We have not compared

with batch approaches such as [13]

Figure 2b shows the mean average precision obtained witthtbe measures. Loreta outperforms
the PA approach across all ranks. More importantly, learaifow rank model of rank 30, using the
best 16660 features, is significantly more precise thamiegma much fuller model of rank 100 and
5000 features. The intuition is that Loreta can be vieweddaptively learning a linear projection
of the data into low dimensional space, which is tailorechgairwise similarity task.

5.2 Image multilabel ranking

Our second set of experiments tackled the problem of legraimank labels for images taken from
a large number of classéf = 1661) with multiple labels per image.

In our approach, we learn a linear classifier ondeatures per each labelke ¢ = {1,..., L}, and
stack all models together to a single mafiix ¢ R“*". At test time, given an imagp € R", the
productWp provides scores for every label per that imggesiven a ground truth labeling, a good
model would rank the true labels higher than the false onash Eow of the matrix model can be
thought of as a sub-model for the corresponding label. Inmgces low rank constraint on the model
implies that these sub-models are linear combinations ofaler number of latent models.

Online learning of label rankings with Loreta-1. At each iteration, an imagp is sampled, and
using the current modél’ the scores for all its labels were computédp. These scores are
compared with the ground truth labelisgg= {y1,...,y,} C C. The learner suffers a multilabel
multiclass hinge loss as follows. Lgt= argmax., (Wp)s, be the negative label which obtained
the highest score, whe(@/'p), is thes* component of the score vectti’p). The loss is then
LW, p,y) = >i_1 [(Wp)y — (Wp)y, + 1] . We then used the subgradigfitof this loss for
Loreta: for the set of indices, is, . . . i¢ C y which incurred a non zero hinge loss, theow of G

is p, and for the rowy we setG to be—d - p. The matrixG is rank one, unless no loss was suffered
in which case it ig). .



(a) 20 Newsgroups (b) 20 Newsgroups (c) ImageNet
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Figure 2:(a) Mean average precision (MAP) over 20 newsgroups test set ad almeey Loreta learning for
various ranks. Curve values are averages over 5 train-test sftdjtsnAP of different models with varying
rank. For each rank, a different number of features was selested an information gain criterion, such that
the total memory requirement is kept fixed (number of featwreank is constant). 50000 features were used
for rank = 10. LEGO and OASIS were trained with the same memory (ugifg features and rank00).
Error bars denote the standard error of the mean over 5 train-test(spits1.).(c) ImageNet data. mAP as a
function of the rankk. Curves are means over three train-test splits. Error bars denotaiitasl error of the
mean (s.e.m.). All hyper parameters were selected using crosatiaid Models were initialized either with

k ones along the diagonal, or as a product of rankatrices with random normal entries (denoted rand. init.).

Data set and preprocessing. We used a subset of the ImageNet 2010 Challenge
(www.imagenet.org/challenges/LSVRC/2010/) contairimgges labeled with respect to the Word-
Net hierarchy. Each image was manually labeled with a siclgkss label (for a total of 1000 classes).
We added labels for each image, using classes along theqaiatoot of the hierarchy (adding 676
classes in total). We discarded ancestor labels covering than 10% of the images, leaving 1661
labels (5.3 labels per image on average). We used Imageblegtsflwords representation, based on
vector quantizing SIFT features with a vocabulary of 100@dsofollowed bytf-idf normalization.

Experimental procedureand evaluation protocol. We split the data into 30 training and 20 testing
images per every base level label. The quality of the lealaieel ranking, was evaluated using the
mean average precision (mAP) criterion mentioned above.

Comparisons. We compared the performance of Loreta on this task with tbtker approaches:
(1) PA: Iterative Passive-Aggressive as described above(2) Matrix Perceptron: a full rank
conservative gradient descgB) Group M ulti-Class Perceptron a mixed (2,1) norm online mirror
descent algorithm [21]. Loreta and PA were run using a rafigéferent model ranks. For all three
methods the step size (or C parameter for the PA) was chosBrdigt validation on the test set.

Figure Fig. 2c plots the mAP precision of Loreta and PA fofettént model ranks, while showing
on the right the mAP of the full rank 1000 gradient descent @d) norm algorithms. Loreta
significantly improves over all other methods across alksan

6 Discussion

We presented Loreta, an algorithm which learns a low-rankiriased on stochastic Riemannian
gradient descent and efficient retraction to the manifoldwfrank matrices. Loreta achieves supe-
rior precision in a task of learning similarity in high dinsonal feature spaces, and in multi-label
annotation, where it scales well with the number of classes.

Loreta yields a factorized representation of the low rankrixaFor classification, it can be viewed
as learning two matrix components: one that projects thk dimensional data into a low dimen-
sion, and a second that learns to classify in the low dimendiomay become useful in the future
for exploring high dimensional data, or extract relatioesaeen large number of classes.
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