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Abstract
When learning models that are represented in matrix forms, enforcing a low-rank
constraint can dramatically improve the memory and run timecomplexity, while
providing a natural regularization of the model. However, naive approaches for
minimizing functions over the set of low-rank matrices are either prohibitively
time consuming (repeated singular value decomposition of the matrix) or nu-
merically unstable (optimizing a factored representationof the low rank matrix).
We build on recent advances in optimization over manifolds,and describe an it-
erative online learning procedure, consisting of a gradient step, followed by a
second-orderretraction back to the manifold. While the ideal retraction is hard to
compute, and so is the projection operator that approximates it, we describe an-
other second-order retraction that can be computed efficiently, with run time and
memory complexity ofO ((n + m)k) for a rank-k matrix of dimensionm × n,
given rank-one gradients. We use this algorithm, LORETA, tolearn a matrix-
form similarity measure over pairs of documents represented as high dimensional
vectors. LORETA improves the mean average precision over a passive- aggres-
sive approach in a factorized model, and also improves over afull model trained
over pre-selected features using the same memory requirements. LORETA also
showed consistent improvement over standard methods in a large (1600 classes)
multi-label image classification task.

1 Introduction
Many learning problems involve models represented in matrix form. These include metric learning,
collaborative filtering, and multi-task learning where alltasks operate over the same set of features.
In many of these models, a natural way to regularize the modelis to limit the rank of the correspond-
ing matrix. In metric learning, a low rank constraint allowsto learn a low dimensional representation
of the data in a discriminative way. In multi-task problems,low rank constraints provide a way to
tie together different tasks. In all cases, low-rank matrices can be represented in a factorized form
that dramatically reduces the memory and run-time complexity of learning and inference with that
model. Low-rank matrix models could therefore scale to handle substantially many more features
and classes than with full rank dense matrices.

As with many other problems, the rank constraint is non-convex, and in the general case, minimizing
a convex function subject to a rank constraint is NP-hard [1]1. As a result, two main approaches have
been commonly used. Sometimes, a matrixW ∈ R

n×m of rankk is represented as a product of two
low dimension matricesW = ABT , A ∈ R

n×k, B ∈ R
m×k and simple gradient descent techniques

are applied to each of the product terms separately [3]. Second, projected gradient algorithms can
be applied by repeatedly taking a gradient step and projecting back to the manifold of low-rank
matrices. Unfortunately, computing the projection to thatmanifold becomes prohibitively costly for
large matrices and cannot be computed after every gradient step.

∗also at the Gonda Brain Research Center, Bar Ilan University
1Some special cases are solvable (notably, PCA), relying mainly on singular value decomposition [2] and

semi-definite programming techniques. These methods scale poorly to large scale tasks.
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Figure 1: A two step procedure for com-
puting a retracted gradient. The first step
computes the Riemannian gradientξ (the
projection of the gradient onto the tan-
gent spaceTxM

n,m
k ), yielding xt+ 1

2 =
xt + ηt∇L(xt). The second step com-
putes the retraction onto the manifold
xt+1 = Rx(ξt).

In this paper we propose new algorithms for online learning on the manifold of low-rank matrices,
which are based on an operation calledretraction. Retractions are operators that map from a vector
space that is tangent to the manifold, into the manifold. They include the projection operator as a
special case, but also include other retractions that can becomputed dramatically more efficiently.
We use second order retractions to develop LORETA – an onlinealgorithm for learning low rank
matrices. It has a memory and run time complexity ofO ((n + m)k) when the gradients have rank
one, a case which is relevant to numerous online learning problems as we show below.

We test Loreta in two different domains and learning tasks. First, we learn a bilinear similarity
measure among pairs of text documents, where the number of features (text terms) representing
each document could become very large. Loreta performed better than other techniques that operate
on a factorized model, and also improves retrieval precision by 33% as compared with training a
full rank model over pre-selected most informative features, using comparable memory footprint.
Second, we applied Loreta to image multi-label ranking, a problem in which the number of classes
could grow to millions. Loreta significantly improved over full rank models, using a fraction of the
memory required. These two experiments suggest that low-rank optimization could become very
useful for learning in high-dimensional problems.

This paper is organized as follows. We start with an introduction to optimization on manifolds,
describing the notion of retractions. We then derive our low-rank online learning algorithm, and test
it in two applications: learning similarity of text documents, and multi-label ranking for images.

2 Optimization on Riemannian manifolds

The field of numerical optimization on smooth manifolds has advanced significantly in the past
few years. We start with a short introduction to embedded manifolds, which are the focus of
this paper. Anembedded manifold is a smooth subset of an ambient spaceR

n. For instance the
set {x : ||x||2 = 1,x ∈ R

n}, the unit sphere, is ann− 1 dimensional manifold embedded inn-
dimensional spaceRn. Here we focus on the manifold oflow-rank matrices, namely, the set of
n×m matrices of rankk wherek < m,n. It is an(n + m)k − k2 dimensional manifold embedded
in R

n×m, which we denoteMn,m
k . Embedded manifolds inherit many properties from the ambient

space, a fact which simplifies their analysis. For example, the Riemannian metric for embedded
manifolds is simply the Euclidean metric restricted to the manifold.

Motivated by online learning, we focus here on developing a stochastic gradient descent procedure
to minimize a loss functionL over the manifold of low-rank matricesMn,m

k ,

min
x

L(x) s.t. x ∈ Mn,m
k . (1)

To illustrate the challenge in this problem, consider a simple stochastic gradient descent algorithm
(Fig. 1). At every stept of the algorithm, a gradient step update takesxt+ 1

2 outside of the manifold
M and has to be mapped back onto the manifold. The most common mapping operation is the
projection operation, which, given a pointxt+ 1

2 outside the manifold, would find the closest point
in M. Unfortunately, the projection operation is very expensive to compute for the manifold of
low rank matrices, since it basically involves a singular value decomposition. Here we describe a
wider class of operations calledretractions, that serve a similar purpose: they find a point on the
manifold that is in the direction of the gradient. Importantly, we describe a specific retraction that
can be computed efficiently. Its runtime complexity dependson 4 quantities: the model matrix
dimensionsm andn; its rankk; and the rank of the gradient matrix,r. The overall complexity is
O

(

(n + m)(k + r)2
)

, andO ((n + m)k) for rank-one gradients, which are a very common case.
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To explain how retractions are computed, we first describe the notion of atangent space and the
Riemannian gradient of a function on a manifold.

Riemannian gradient and the tangent space

Each pointx in an embedded manifoldM has a tangent space associated with it, denotedTxM
(see Fig. 1). The tangent space is a vector space of the same dimension as the manifold that can
be identified in a natural way with a linear subspace of the ambient space. It is usually simple to
compute the linear projectionPx of any point in the ambient space onto the tangent spaceTxM.

Given a manifoldM and a differentiable functionL : M → R, theRiemannian gradient ∇L(x)
of L onM at a pointx is a vector in the tangent spaceTxM. A very useful property of embedded
manifolds is the following: given a differentiable function f defined on the ambient space (and thus
on the manifold), the Riemannian gradient off at pointx is simply the linear projectionPx of the
ordinary gradient off onto the tangent spaceTxM. An important consequence follows in case
the manifold represents the set of points obeying a certain constraint. In this case the Riemannian
gradient off is equivalent to the ordinary gradient of thef minus the component which is normal
to the constraint. Indeed this normal component is exactly the component which is irrelevant when
performing constrained optimization.

The Riemannian gradient allows us to computext+ 1

2 = xt + ηt∇L(x), for a given iterate pointxt

and step sizeηt. We now examine howxt+ 1

2 can be mapped back onto the manifold.

Retractions

Intuitively, retractions capture the notion of ”going along a straight line” on the manifold. The
mathematically ideal retraction is called theexponential mapping: it maps the tangent vectorξ ∈
TxM to a point along a geodesic curve which goes throughx in the direction ofξ. Unfortunately, for
many manifolds (including the low-rank manifold considered here) calculating the geodesic curve is
computationally expensive. A major insight from the field ofRiemannian manifold optimization is
that using the exponential mapping is unnecessary since computationally cheaper retractions exist.

Formally, for a pointx in an embedded manifoldM, a retraction is any functionRx : TxM → M
which satisfies the following two conditions [4]: (1) Centering: Rx(0) = x. (2) Local rigidity: the
curve defined byγξ(τ) = Rx(τξ) satisfiesγ̇ξ(0) = ξ. It can be shown that any such retraction
approximates the exponential mapping to a first order [4].Second-order retractions, which ap-
proximate the exponential mapping to second order aroundx, have to satisfy the following stricter

conditions:Px

(

dRx(τξ)
dτ2 |τ=0

)

= 0, for all ξ ∈ TxM, wherePx is the linear projection from the

ambient space onto the tangent spaceTxM. When viewed intrinsically, the curveRx(τξ) defined
by a second-order retraction has zero acceleration at pointx, namely, its second order derivatives
are all normal to the manifold. The best known example of a second-order retraction onto embed-
ded manifolds is the projection operation [5]. Importantly, projections are viewed here as one type
of a second order approximation to the exponential mapping,which can be replaced by any other
second-order retractions, when computing the projection is too costly.

Given the tangent space and a retraction, we can now define a Riemannian gradient descent step for
the lossL at pointxt ∈ M:
(1) Gradient step: Computext+ 1

2 = xt + ξt, with ξt = ∇L(xt) = Pxt(∇̃L(xt)), where∇̃L(xt)
is the ordinary gradient ofL in the ambient space.
(2) Retraction step: Computext+1 = Rxt(−ηtξt), whereηt is the step size.
For a proper step size, this procedure can be proved to have local convergence for any retraction [4].

3 Online learning on the low rank manifold

Based on the retractions described above, we now present an online algorithm for learning low-
rank matrices, by performing stochastic gradient descent on the manifold of low rank matrices.
At every iteration the algorithm suffers a loss, and performs a Riemannian gradient step followed
by a retraction to the manifoldMn,m

k . Section 3.1 discusses general online updates. Section 3.2
discusses the very common case where the online updates induce a gradient of rankr = 1.

In what follows, a lowercasex denotes an abstract point on the manifold, lowercase Greek letters
like ξ denote an abstract tangent vector, and uppercase Roman letters likeA denote concrete matrix
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representations as kept in memory (takingn × m float numbers to store). We intermix the two
notations, as inξ = AZ, when the meaning is clear from the context. The set ofn × k matrices of
rankk is denotedRn×k

∗ .

3.1 The general LORETA algorithm

We start with a Lemma that gives a representation of the tangent spaceTxM, extending the con-
structions given in [6] to the general manifold of low-rank matrices. The proof is given in the
supplemental material.
Lemma 1. Let x ∈ Mn,m

k have a (non-unique) factorization x = ABT , where A ∈ R
n×k
∗ , B ∈

R
m×k
∗ . Let A⊥ ∈ R

n×(n−k) and B⊥ ∈ R
m×(m−k) be the orthogonal complements of A and B

respectively, such that AT
⊥A = 0, BT

⊥B = 0, AT
⊥A⊥ = In−k, BT

⊥B⊥ = Im−k. The tangent space
to Mn,m

k at x is:

TxM =

{

[A A⊥]

[

M NT
1

N2 0

] [

BT

BT
⊥

]

: M ∈ R
k×k, N1 ∈ R

(m−k)×k, N2 ∈ R
(n−k)×k

}

(2)

Let ξ ∈ Mn,m
k be a tangent vector tox = ABT . From the characterization above it follows that

ξ can be decomposed in a unique manner into three orthogonal components:ξ = ξS + ξP
l + ξP

r ,
whereξS = AMBT , ξP

l = ANT
1 BT

⊥ andξP
r = A⊥N2B

T . In online learning we are repeatedly
given a rank-r gradient matrixZ, and want to compute a step onMn,m

k in the direction ofZ. As
a first step we wish to find its projectionPx(Z) onto the tangent space. Specifically, we wish to
find the three matricesM , N1 andN2 such thatPx(Z) = AMBT + ANT

1 BT
⊥ + A⊥N2B

T . Since

we assumeA is of full column rank, its pseudo-inverseA† obeysA† =
(

AT A
)−1

AT . The matrix
projecting ontoA’s columns, denotedPA, is exactly equal toAA†. We can similarly definePA⊥

,PB

andPB⊥
. A straightforward computation shows that for a given matrix Z, we haveM = A†ZB†T ,

N1 = BT
⊥ZT A†T , N2 = AT

⊥ZBT
⊥, yieldingξS = PAZPB , ξP

l = PAZPB⊥
, ξP

r = PA⊥
ZPB .

The following theorem defines the retraction that we use. Theproof is given in the supplemental
material.
Theorem 1. Let x ∈ Mn,m

k , x = ABT , and x† = B†T A† = B(BT B)−1(AT A)−1AT (this holds
since we assume A and B are of full column rank). Let ξ ∈ TxM

n,m
k , ξ = ξS + ξP

l + ξP
r , as

described above, and let

w1 = x +
1

2
ξS + ξP

r −
1

8
ξSx†ξS −

1

2
ξP
r x†ξS , (3)

w2 = x +
1

2
ξS + ξP

l −
1

8
ξSx†ξS −

1

2
ξSx†ξP

l .

The mapping Rx(ξ) = w1x
†w2 is a second order retraction from a neighborhood Θx ⊂ TxM

n,m
k

to Mn,m
k .

We now have the ingredients necessary for a Riemannian stochastic gradient descent algorithm.

Algorithm 1 : Naive Riemannian stochastic gradient descent

Input: MatricesA ∈ R
n×k

∗ , B ∈ R
m×k

∗ s.t. x = ABT . MatricesG1 ∈ R
n×r, G2 ∈ R

m×r s.t. G1G
T

2 =
−ηξ = −η∇̃L(x) ∈ R

n×m, where∇̃L(x) is the gradient in the ambient space andη > 0 is the step size.
Output: MatricesZ1 ∈ R

n×k

∗ , Z2 ∈ R
m×k

∗ such thatZ1Z
T

2 = Rx(−ηξ).
Compute: matrix dimension

A† = (AT A)−1AT , B† = (BT B)−1BT k × n, k × m
A⊥, B⊥= orthogonal complements ofA, B n × (n − k), m × (m − k)
M = A†G1G

T

2 B†T k × k

N1 = BT

⊥G2G
T

1 A†T , N2 = AT

⊥G1G
T

2 B†T (m − k) × k, (n − k) × k

Z1 =
(

A
(

Ik + 1

2
M −

1

8
M2

)

+ A⊥N2

(

Ik −
1

2
M

))

n × k

Z2 =
(

B
(

Ik + 1

2
MT

−
1

8
(MT )2

)

+ B⊥N1

(

Ik −
1

2
MT

))

m × k

Given a gradient in the ambient space∇̃L(x), we can calculate the matricesM , N1 andN2 which
allow us to represent its projection onto the tangent space,and furthermore allow us to calculate the
retraction. The procedure is outlined in algorithm 1, with some rearranging and term collection.
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Algorithm 1 explicitly computes and stores the orthogonal complement matricesA⊥ andB⊥, which
in the low rank casek ≪ m,n, have sizeO(mn) as the originalx. To improve the memory
complexity, we use the fact that the matricesA⊥ andB⊥ always operate with their transpose. Since
they are orthogonal, the matrixA⊥AT

⊥ is a projection matrix, one which we denoted earlier byPA⊥
,

and likewise forB⊥. Because of the orthogonal complementarity, these projection matrices are
equal toIn − PA andIm − PB respectively. We use this identity to reformulate the algorithm such
that only matrices of size at mostmax(n,m)×k or max(n,m)×r are kept in memory. The runtime
complexity of Algorithm 2 can be easily computed based on matrix multiplications complexity, and
equalsO

(

(n + m)(k + r)2
)

.

Algorithm 2 : General Riemannian stochastic gradient descent
Input and Output: As in Algorithm 1
Compute: matrix dimension

A† = (AT A)−1AT , B† = (BT B)−1BT k × n, k × m

Â = A†
· G1, B̂ = B†

· G2 k × r, k × r

ProjAG = A · Â n × r

Q = B̂T
· Â r × r

A∆ = −
1

2
ProjAG + 3

8
ProjAG · Q + G1 −

1

2
G1 · Q n × r

Z1 = A + A∆
· B̂T n × k

GBproj =
(

GT

2 B
)

· B† r × m

B∆ = −
1

2
GBproj + 3

8
Q · GBproj + GT

2 −
1

2
Q · GT

2 r × m

ZT

2 = BT + Â · B∆ k × m

Algorithm 3 , Loreta-1: Rank-one Riemannian stochastic gradient descent

Input: MatricesA ∈ R
n×k

∗ , B ∈ R
m×k

∗ s.t. x = ABT . MatricesA† andB†, the pseudo-inverses ofA and
B respectively. VectorsG1 ∈ R

n×1, G2 ∈ R
m×1 s.t. G1G

T

2 = −ηξ = −η∇̃L(x) ∈ R
n×m, where∇̃L(x)

is the gradient in the ambient space andη > 0 is the step size.
Output: MatricesZ1 ∈ R

n×k

∗ , Z2 ∈ R
m×k

∗ s.t.Z1Z
T

2 = Rx(−ηξ). MatricesZ†
1

andZ
†
2
, the pseudo-inverses

of Z1 andZ2 respectively.
Compute: matrix dimension

Â = A†
· G1, B̂ = B†

· G2 k × 1

ProjAG = A · Â n × 1

Q = B̂T
· Â 1 × 1

A∆ = ProjAG
(

−
1

2
+ 3

8
Q

)

+ G1(1 −
1

2
Q) n × 1

Z1 = A + A∆
· B̂T n × k

GBproj =
(

GT

2 B
)

· B† 1 × m

B∆ = GBproj
(

−
1

2
+ 3

8
Q

)

+ GT

2 (1 −
1

2
Q) 1 × m

ZT

2 = BT + Â · B∆ k × m

Z
†
1

= rank one pseudoinverse update(A, A†, A∆, B̂) k × n

Z
†
2

= rank one pseudoinverse update(B, B†, B∆, Â) k × m

3.2 LORETA with rank-one gradients

In many learning problems, the gradient matrix required fora gradient step update has a rank of one.
This is the case for example, when the matrix modelW acts as a bilinear form on two vectors,p and
q, and the loss is a linear function ofp

T Wq (as in [7, 8], and Sec. 5.1). In that case, the gradient
is the rank-one, outer product matrixpq

T . As another example, consider the case of multitask
learning, where the matrix modelW operates on a vector inputp, and the loss is the squared loss
between the multiple predictionsWp and the true labelsq: ‖Wp − q‖2. The gradient of the loss
is (Wp − q)pT , which is again a rank-one matrix. We now show how to reduce the complexity of
each iteration to be linear in the model rankk when the rank of the gradient matrixr is one.

Given rank-one gradients (r = 1), the most computationally demanding step in Algorithm 2 isthe
computation of the pseudo-inverse of the matricesA andB, takingO(nk2) andO(mk2) operations.
All other operations areO(max(n,m)k) at most. Forr = 1 the outputsZ1 andZ2 become rank-one
updates of the input matricesA andB. This enables us to keep the pseudo-inversesA† andB† from
the previous round, and perform a rank-one update to them, following a procedure developed by [9].

5



This procedure is similar to the better known Sherman-Morrison formula for the inverse of a rank-
one perturbed matrix, and its computational complexity forann × k matrix isO(nk) operations.
Using that procedure, we derive our final algorithm,Loreta-1, the rank-one Riemannian stochastic
gradient descent. Its overall time and space complexity arebothO((n + m)k) per gradient step.

The memory requirement of Loreta-1 is about4nk (assumingm = n), since it receives four input
matrices of sizenk (A,B,A†, B†) and assuming it can compute the four outputs (Z1, Z2, Z

†
1 , Z

†
2),

in-place while destroying previously computed terms.

4 Related work
A recent summary of many advances in the field of optimizationon manifolds is given in [4]. More
specific to the field of low rank matrix manifolds, some work has been done on the general problem
of optimization with low rank positive semi-definite (PSD) matrices. These include [10] and [6]; the
latter introduced the retraction for PSD matrices which we extended here to general low-rank matri-
ces. The problem of minimizing a convex function over the setof low rank matrices, was addressed
by several authors, including [11], and [12] which also considers additional affine constraints, and
its connection to recent advances in compresses sensing. The main tools used in these works are the
trace norm (sum of singular values) and semi-definite programming. See also [2].

More closely related to the current paper are the works by Kulis et al. [13] and Meka et al. [14]. The
first deals with learning low rank PSD matrices, and uses the rank-preserving log-det divergence and
clever factorization and optimization in order to derive anupdate rule with runtime complexity of
O(nk2) for ann × n matrix of rankk. The second uses online learning in order to find a minimal
rank square matrix under approximate affine constraints. The algorithm does not directly allow a
factorized representation, and depends crucially on an ”oracle” component, which typically requires
to compute an SVD. Multi-class ranking with a large number offeatures was studied in [3].

5 Experiments
We tested Loreta-1 in two learning tasks: learning a similarity measure between pairs of text docu-
ments using the 20-newsgroups data collected by [15], and learning to rank image label annotations
based on a multi-label annotated set, using theimagenet dataset [16].2

5.1 Learning similarity on the 20 Newsgroups data set

In our first set of experiments, we looked at the problem of learning a similarity measure between
pairs of text documents. Similarity learning is a well studied problem, closely related to metric
learning (see [17] for a review). It has numerous applications in information retrieval such asquery
by example, and finding related content on the web.

One approach to learn pairwise relations is to measure the similarity of two documentsp,q ∈ R
n

using a bilinear formSW (p,q) = p
T Wq parametrized by a modelW ∈ R

n×n. Such models
can be learned using standard online methods [8], and were shown to achieve high precision. Un-
fortunately, since the number of parameters grows asn2, storing the matrixW in memory is only
feasible for limited feature dimensionality. To handle larger vocabularies, like those containing all
textual terms found in a corpus, a common approach is to pre-select a subset of the features and train
a model over the low dimensional data. However, such preprocessing may remove crucial signals in
the data even if features are selected in a discriminative way.

To overcome this difficulty, we used Loreta-1 to learn a rank-k parametrization of the modelW ,
which can be factorized asW = ABT , whereA,B ∈ R

n×k. In each of our experiments, we
selected a subset ofn features, and trained a rankk model. We varied the number of featuresn and
the rank of the matrixk so as to use a fixed amount of memory. For example, we used a rank-10
model with50K features, and a rank-50 model with10K features.

Similarity learning with Loreta-1. We use an online procedure similar to that in [7, 8]. At each
round, three instances are sampled: a query documentq, and two documentsp1 andp2 such that
p1 is known to be more similar toq thatp2. We wish that the model assigns a higher similarity
score to the pair(q,p1) than the pair(q,p2), hence use the online ranking hinge loss defined as
lW (q,p1,p2) = [1 − SW (q,p1) + SW (q,p2)]+.

2Matlab code for Loreta-1 can be provided upon request.
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Data preprocessing and feature selection. We used the 20 newsgroups data set (peo-
ple.csail.mit.edu/jrennie/20Newsgroups), containing 20 classes with approximately 1000 documents
each. We removed stop words but did not apply stemming. We selected features that conveyed high
information about the identity of the class (over the training set) using theinfogain criterion [18].
The selected features were normalized usingtf-idf, and then represented each document as a bag of
words. Two documents were considered similar if they sharedthe same class label.

Experimental procedure and evaluation protocol. The 20 newsgroups site proposes a split of
the data into train and test sets. We repeated splitting 5 times based on the sizes of the proposed
splits (a train / test ratio of 65% / 35%). We evaluated the learned similarity measures using a
ranking criterion. We view every documentq in the test set as a query, and rank the remaining test
documentsp by their similarity scoresqT Wp. We then compute the precision (fraction of positives)
at the topr ranked documents. We further compute themean average precision (mAP), a widely
used measure in the information retrieval community, whichaverages over all values ofr.

Comparisons. We compared Loreta with the following approaches.(1) A direct gradient descent
(GD) similar to [3]. The model is represented as a product of two matricesŴ = ABT . Stochastic
gradient descent steps are computed over the factorsA andB, for the same loss used by Loreta
lW (q,p1,p2). The step sizeη was selected using cross validation. The GD steps are:Anew =
A+ηq(p1−p2)

T B, andBnew = A+η(p1−p2)q
T A. (2) Iterative Passive-Aggressive (PA). We

found the above GD procedure to be very unstable, often causing the models to diverge. We therefore
used a related online algorithm from the family of passive-aggressive algorithms [19]. We iteratively
optimize overA given a fixedB and vice versa. The optimization is a tradeoff between minimizing
the losslW , and limiting how much the models change at each iteration. The steps size for updating
A is computed to beηA = max( lW (q,p1,p2))

‖q‖2‖BT (p1−p2)‖2 , C), andηB = max( lW (q,p1,p2))
‖(p1−p2)‖2‖AT q‖2 , C). C

is a predefined parameter controlling the maximum magnitudeof the step size. This procedure is
numerically more stable because of the normalization by thenorms of the matrices multiplied by
the gradient factors.(3) Naive Passive-Aggressive (PA v2) This method is similar to the iterative
PA above, with the step size computed as with unfactored matricesη = max( lW (q,p1,p2))

‖q‖2‖(p1−p2)‖2 , C).
(4) Full rank similarity learning models. We compared with two online metric learning methods,
LEGO [20] and OASIS [8]. Both algorithms learn a full (non-factorized) model, and were run with
n = 1000, in order to be consistent with the memory constraint of Loreta-1. We have not compared
with batch approaches such as [13]

Figure 2b shows the mean average precision obtained with thethree measures. Loreta outperforms
the PA approach across all ranks. More importantly, learning a low rank model of rank 30, using the
best 16660 features, is significantly more precise than learning a much fuller model of rank 100 and
5000 features. The intuition is that Loreta can be viewed as adaptively learning a linear projection
of the data into low dimensional space, which is tailored to the pairwise similarity task.

5.2 Image multilabel ranking
Our second set of experiments tackled the problem of learning to rank labels for images taken from
a large number of classes(L = 1661) with multiple labels per image.

In our approach, we learn a linear classifier overn features per each labelc ∈ C = {1, . . . , L}, and
stack all models together to a single matrixW ∈ R

L×n. At test time, given an imagep ∈ R
n, the

productWp provides scores for every label per that imagep. Given a ground truth labeling, a good
model would rank the true labels higher than the false ones. Each row of the matrix model can be
thought of as a sub-model for the corresponding label. Imposing a low rank constraint on the model
implies that these sub-models are linear combinations of a smaller number of latent models.

Online learning of label rankings with Loreta-1. At each iteration, an imagep is sampled, and
using the current modelW the scores for all its labels were computed,Wp. These scores are
compared with the ground truth labelingy = {y1, . . . , yr} ⊂ C. The learner suffers a multilabel
multiclass hinge loss as follows. Letȳ = argmaxs/∈y

(Wp)s, be the negative label which obtained
the highest score, where(Wp)s is thesth component of the score vector(Wp). The loss is then
L(W,p,y) =

∑r
i=1 [(Wp)ȳ − (Wp)yi

+ 1]+. We then used the subgradientG of this loss for
Loreta: for the set of indicesi1, i2, . . . id ⊂ y which incurred a non zero hinge loss, theij row of G
is p, and for the row̄y we setG to be−d · p. The matrixG is rank one, unless no loss was suffered
in which case it is0. .
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Figure 2:(a) Mean average precision (mAP) over 20 newsgroups test set as traced along Loreta learning for
various ranks. Curve values are averages over 5 train-test splits.(b) mAP of different models with varying
rank. For each rank, a different number of features was selected using an information gain criterion, such that
the total memory requirement is kept fixed (number of features× rank is constant). 50000 features were used
for rank = 10. LEGO and OASIS were trained with the same memory (using1000 features and rank=1000).
Error bars denote the standard error of the mean over 5 train-test splits(s.e.m.).(c) ImageNet data. mAP as a
function of the rankk. Curves are means over three train-test splits. Error bars denote the standard error of the
mean (s.e.m.). All hyper parameters were selected using cross validation. Models were initialized either with
k ones along the diagonal, or as a product of rank-k matrices with random normal entries (denoted rand. init.).

Data set and preprocessing. We used a subset of the ImageNet 2010 Challenge
(www.imagenet.org/challenges/LSVRC/2010/) containingimages labeled with respect to the Word-
Net hierarchy. Each image was manually labeled with a singleclass label (for a total of 1000 classes).
We added labels for each image, using classes along the path to the root of the hierarchy (adding 676
classes in total). We discarded ancestor labels covering more than 10% of the images, leaving 1661
labels (5.3 labels per image on average). We used ImageNets bag of words representation, based on
vector quantizing SIFT features with a vocabulary of 1000 words, followed bytf-idf normalization.

Experimental procedure and evaluation protocol. We split the data into 30 training and 20 testing
images per every base level label. The quality of the learnedlabel ranking, was evaluated using the
mean average precision (mAP) criterion mentioned above.

Comparisons. We compared the performance of Loreta on this task with threeother approaches:
(1) PA: Iterative Passive-Aggressive as described above.(2) Matrix Perceptron: a full rank
conservative gradient descent(3) Group Multi-Class Perceptron a mixed (2,1) norm online mirror
descent algorithm [21]. Loreta and PA were run using a range of different model ranks. For all three
methods the step size (or C parameter for the PA) was chosen by5-fold validation on the test set.

Figure Fig. 2c plots the mAP precision of Loreta and PA for different model ranks, while showing
on the right the mAP of the full rank 1000 gradient descent and(2, 1) norm algorithms. Loreta
significantly improves over all other methods across all ranks.

6 Discussion
We presented Loreta, an algorithm which learns a low-rank matrix based on stochastic Riemannian
gradient descent and efficient retraction to the manifold oflow-rank matrices. Loreta achieves supe-
rior precision in a task of learning similarity in high dimensional feature spaces, and in multi-label
annotation, where it scales well with the number of classes.

Loreta yields a factorized representation of the low rank matrix. For classification, it can be viewed
as learning two matrix components: one that projects the high dimensional data into a low dimen-
sion, and a second that learns to classify in the low dimension. It may become useful in the future
for exploring high dimensional data, or extract relations between large number of classes.
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