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Abstract
We initiate the study of incentives in a general machine learning
framework. We focus on a game-theoretic regression learning
setting where private information is elicited from multiple agents
with different, possibly conflicting, views on how to label the
points of an input space. This conflict potentially gives rise to
untruthfulness on the part of the agents. In the restricted but
important case when every agent cares about a single point, and
under mild assumptions, we show that agents are motivated to
tell the truth. In a more general setting, we study the power and
limitations of mechanisms without payments. We finally establish
that, in the general setting, the VCG mechanism goes a long way in
guaranteeing truthfulness and economic efficiency.

1 Introduction
Machine learning is the area of computer science concerned
with the design and analysis of algorithms that can learn
from experience. A supervised learning algorithm observes
a training set of labeled examples, and attempts to learn a
rule that accurately predicts the labels of new examples. Fol-
lowing the rise of the Internet as a computational platform,
machine learning problems have become increasingly dis-
persed, in the sense that different parts of the training set
may be controlled by different computational or economic
entities.

Motivation Consider an Internet search company try-
ing to improve the performance of their search engine by
learning a ranking function from examples. The ranking
function is the heart of a modern search engine, and can be
thought of as a mapping that assigns a real-valued score to
every pair of a query and a URL. Some of the large Inter-
net search companies currently hire Internet users (which we
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hereinafter refer to as “experts”) to manually rank such pairs.
These rankings may then be pooled and used to train a rank-
ing function. Moreover, the experts are chosen in a way such
that averaging over the experts’ opinions and interests pre-
sumably pleases the average Internet user.

However, different experts may have different interests
and a different idea of the results a good search engine should
return. For instance, take the ambiguous query “Jaguar”,
which has become folklore in search engine designer circles.
The top answer given by most search engines for this query
is the website of the luxury car manufacturer. Knowing
this, an animal-loving expert may decide to give this pair a
disproportionately low score, hoping to improve the relative
rank of websites dedicated to the Panthera Onca. An expert
who is an automobile enthusiast may counter this measure
by giving automotive websites a much higher score than is
appropriate. From the search company’s perspective, this
type of strategic manipulation introduces an undesired bias
in the training set.

Setting and Goals Our problem setting falls within the
general boundaries of statistical regression learning. Re-
gression learning is the task of constructing a real-valued
function f based on a training set of examples, where each
example consists of an input to the function and its corre-
sponding output. In particular, the example (x, y) suggests
that f (x) should be equal to y. The accuracy of a func-
tion f on a given input-output pair (x, y) is defined using a
loss function `. Popular choices of the loss function are the
squared loss, `( f (x), y) = ( f (x) − y)2, and the absolute loss,
`( f (x), y) = | f (x) − y|. We typically assume that the training
set is obtained by sampling i.i.d. from an underlying distribu-
tion over the product space of inputs and outputs. The overall
quality of the function constructed by the learning algorithm
is defined to be its expected loss, with respect to the same
distribution.

We augment this well-studied setting by introducing a
set of strategic agents. Each agent holds as private informa-
tion an individual distribution over the input space and values
for the points in the support of this distribution, and measures
the quality of a regression function with respect to this data.
The global goal, on the other hand, is to do well with respect
to the average of the individual points of view. A training set
is obtained by eliciting private information from the agents,
who may reveal this information untruthfully in order to fa-
vorably influence the result of the learning process.



Mechanism design is a subfield of economics that is
concerned with the question of how to incentivize agents
to truthfully report their private information, also known as
their type. Given potentially non-truthful reports from the
agents, a mechanism determines a global solution, and pos-
sibly additional monetary transfers to and from the agents.
A mechanism is said to be incentive compatible if it is al-
ways in the agents’ best interest to report their true types,
and efficient if the solution maximizes social welfare (i.e.,
minimizes the overall loss). Our goal in this paper will be to
design and analyze incentive compatible and efficient mech-
anisms for the regression learning setting.

Results We begin our investigation by considering a
restricted setting where each agent is only interested in a
single point of the input space. Quite surprisingly, it turns
out that a specific choice of `, namely the absolute loss
function, leads to excellent game-theoretic properties: the
algorithm which simply finds an empirical risk minimizer on
the training set is group strategyproof, i.e., no coalition of
agents is motivated to lie. All of our incentive compatibility
results are obtained with respect to dominant strategies:
truthfulness holds regardless of the other agents’ actions. In a
sense, this is the strongest incentive compatibility result that
could possibly be obtained. We also show that even much
weaker truthfulness results cannot be obtained for a wide
range of other loss functions, including the popular squared
loss.

In the more general case where agents are interested
in non-degenerate distributions, achieving incentive compat-
ibility requires more sophisticated mechanisms. We show
that the well-known VCG mechanism does very well: with
probability 1 − δ, no agent can gain more than ε by lying,
where both ε and δ can be made arbitrarily small by increas-
ing the size of the training set. This result holds for any
choice of loss function `.

We also study what happens when payments are dis-
allowed. In this setting, we obtain limited positive results
for the absolute loss function and for restricted yet inter-
esting function classes. In particular, we present a mecha-
nism which is approximately group strategyproof as above
and 3-efficient in the sense that the solution provides a 3-
approximation to optimal social welfare. We complement
these results with a matching lower bound and provide strong
evidence that no approximately incentive compatible and ap-
proximately efficient mechanism exists for more expressive
functions classes.

Related Work To the best of our knowledge, this paper
is the first to study incentives in a general machine learn-
ing framework. Previous work in machine learning has in-
vestigated the related problem of learning in the presence
of inconsistent and noisy training data, where the noise can
be either random [13, 7] or adversarial [11, 4]. Barreno et
al. [2] consider a specific situation where machine learning

is used as a component of a computer security system, and
account for the possibility that the training data is subject to
a strategic attack intended to infiltrate the secured system.
In contrast to these approaches, we do not attempt to design
algorithms that can tolerate noise, but instead focus on de-
signing algorithms that discourage the strategic addition of
noise.

Closely related to our work is the area of algorithmic
mechanism design, introduced in the seminal work of Nisan
and Ronen [17]. Algorithmic mechanism design studies al-
gorithmic problems in a game-theoretic setting where the
different participants cannot be assumed to follow the al-
gorithm but rather act in a selfish way. It has turned out
that the main challenge of algorithmic mechanism design is
the inherent incompatibility of generic truthful mechanisms
with approximation schemes for hard algorithmic problems.
As a consequence, most of the current work in algorith-
mic mechanism design focuses on dedicated mechanisms for
hard problems (see, e.g., [12, 6]). What distinguishes our set-
ting from that of algorithmic mechanism design is the need
for generalization to achieve globally satisfactory results on
the basis of a small number of samples. Due to the dynamic
and uncertain nature of the domain, inputs are usually as-
sumed to be drawn from some underlying fixed distribution.
The goal then is to design algorithms that, with high proba-
bility, perform well on samples drawn from the same distri-
bution.

More distantly related to our work is research which
applies machine learning techniques in game theory and
mechanism design. Balcan et al. [1], for instance, use
techniques from sample complexity to reduce mechanism
design problems to standard algorithmic problems. Another
line of research puts forward that machine learning can
be used to predict consumer behavior, or find a concise
description for collective decision making. Work along this
line includes the learnability of choice functions and choice
correspondences [10, 20, 19].

Structure of the Paper In the following section, we
give a general exposition of regression learning and intro-
duce our model of regression learning with multiple agents.
We then examine three settings of increasing generality: in
Section 3, we consider the case where the distribution of each
agent puts all of the weight on a single point of the input
space; in Section 4, we then move to the more general setting
where the distribution of each agent is a discrete distribution
supported on a finite set of points; we finally investigate arbi-
trary distributions in Section 5, leveraging the results of the
previous sections. In Section 6, we discuss our results and
give some directions for future research.

We will informally introduce notions from game theory
and mechanism design as needed, and refer the reader to
the excellent introduction by Nisan [16] for a more formal
treatment.



2 The Model
In this section we formalize the regression learning problem
described in the introduction and cast it in the framework
of game theory. Some of the definitions are illustrated by
relating them to the Internet search example presented in the
previous section.

We focus on the task of learning a real-valued function
over an input space X. In the Internet search example, X
would be the set of all query-URL pairs, and our task would
be to learn the ranking function of a search engine. Let
N = {1, . . . , n} be a set of agents, which in our running
example would be the set of all experts. For each agent i ∈ N,
let oi be a function from X to R and let ρi be a probability
distribution overX. Intuitively, oi is what agent i thinks to be
the correct real-valued function, while ρi captures the relative
importance that agent i assigns to different parts of X. In
the Internet search example, oi would be the optimal ranking
function according to agent i, and ρi would be a distribution
over query-URL pairs that assigns higher weight to queries
from that agent’s areas of interest.

Let F be a class of functions, where every f ∈ F is a
function from X to the real line. We call F the hypothesis
space of our problem, and restrict the output of the learning
algorithm to functions in F . We evaluate the accuracy of
each f ∈ F using a loss function ` : R × R → R+. For a
particular input-output pair (x, y), we interpret `( f (x), y) as
the penalty associated with predicting the output value f (x)
when the true output is known to be y. As mentioned in
the introduction, common choices of ` are the squared loss,
`(α, β) = (α−β)2, and the absolute loss, `(α, β) = |α−β|. The
accuracy of a hypothesis f ∈ F is defined to be the average
loss of f over the entire input space. Formally, define the
risk associated by agent i with the function f as

Ri( f ) = Ex∼ρi

[
`( f (x), oi(x))

]
.

Clearly, this subjective definition of hypothesis accuracy al-
lows for different agents to have significantly different valu-
ations of different functions in F , and it is quite possible that
we will not be able to please all of the agents simultaneously.
Instead, our goal is to satisfy the agents in N on average. De-
fine J to be a random variable distributed uniformly over the
elements of N. Now define the global risk of a function f to
be the average risk with respect to all of the agents, namely

RN( f ) = E
[
RJ( f )

]
.

We are now ready to formally define our learning-theoretic
goal: we would like to find a hypothesis in F that attains a
global risk as close as possible to inf f∈F RN(F).

Even if N is small, we still have no explicit way of cal-
culating RN( f ). Instead, we use an empirical estimate of
the risk as a proxy to the risk itself. For each i ∈ N, we
randomly sample m points independently from the distribu-
tion ρi and request their respective labels from agent i. In this

way, we obtain the labeled training set S̃ i = {(xi, j, ỹi, j}
m
j=1.

Agent i may label the points in S̃ i however he sees fit, and
we therefore say that agent i controls (the labels of) these
points. We usually denote agent i’s “true” training set by
S i = {(xi j, yi j)}mj=1, where yi j = oi(xi j). After receiving labels
from all agents in N, we define the global training set to be
the multiset S̃ =

⊎
i∈N S̃ i.

The elicited training set S̃ is presented to a regression
learning algorithm, which in return constructs a hypothesis
f̃ ∈ F . Each agent can influence f̃ by modifying the labels
he controls. This observation brings us to the game-theoretic
aspect of our setting. For all i ∈ N, agent i’s private infor-
mation is a vector of true labels yi j = oi(xi j), j = 1, . . . ,m.
The sampled points xi j, j = 1, . . . ,m, are exogenously given
and assumed to be common knowledge. The strategy space
of each agent then consists of all possible values for the la-
bels he controls. In other words, agent i reports a labeled
training set S̃ i. We sometimes use S̃ −i as a shorthand for
S̃ \ S̃ i, the strategy profile of all agents except agent i. The
space of possible outcomes is the hypothesis space F , and
the utility of agent i for an outcome f̃ is determined by his
risk Ri( f̃ ). More precisely, agent i chooses ỹi1, . . . , ỹim so as
to minimize Ri( f ). We follow the usual game-theoretic as-
sumption that he does this with full knowledge of the inner
workings of our regression learning algorithm, and name the
resulting game the learning game.

One of the simplest and most popular regression learn-
ing techniques is empirical risk minimization (ERM). The
empirical risk associated with a hypothesis f , with respect
to a sample S , is denoted by R̂( f , S ) and defined to be the
average loss attained by f on the examples in S , i.e.,

R̂( f , S ) =
1
|S |

∑
(x,y)∈S

`( f (x), y) .

An ERM algorithm finds the empirical risk minimizer f̂
within F . In other words, the ERM algorithm calculates

f̂ = argmin
f∈F

R̂( f , S ) .

For some choices of loss function and hypothesis class, it
may occur that the global minimizer of the empirical risk is
not unique, and we must define an appropriate tie-breaking
mechanism. A large part of this paper will be dedicated to
ERM algorithms.

Since our strategy is to use R̂( f , S̃ ) as a surrogate
for RN( f ), we need R̂( f , S̃ ) to be an unbiased estimator
of RN( f ). A particular situation in which this can be achieved
is when all agents i ∈ N truthfully report ỹi j = oi(xi j) for
all j. Another argument for truthfulness regards the qual-
ity of the overall solution and can be obtained by a variation
of the well-known revelation principle (see, e.g., [16]). As-
sume that for a given mechanism and given true inputs there



is an equilibrium in which some agents report their inputs
untruthfully, and which leads to an outcome that is strictly
better than any outcome achievable by an incentive compati-
ble mechanism. Then we can design a new mechanism that,
given the true inputs, simulates the agents’ lies and yields
the exact same output in equilibrium. To summarize, truth-
ful mechanisms will allow us to obtain an unbiased estimator
of the true risk, and this need not come at the expense of the
overall solution quality.

3 Degenerate Distributions
We begin our study by focusing on a special case, where each
agent is only interested in a single point of the input space.
Even this simple setting has interesting applications. Con-
sider for example the problem of allocating tasks among ser-
vice providers, e.g., messages to routers, jobs to remote pro-
cessors, or reservations of bandwidth to Internet providers.
Machine learning techniques are used to obtain a global pic-
ture of the capacities, which in turn are private information
of the respective providers. Regression learning provides an
appropriate model in this context, as each provider is inter-
ested in an allocation that is as close as possible to its ca-
pacity: more tasks mean more revenue, but an overload is
clearly undesirable.

More formally, the distribution ρi of agent i is now
assumed to be degenerate, and the sample S i becomes a
singleton. Let S = {(xi, yi)}ni=1 denote the set of true input-
output pairs, where now yi = oi(xi), and S i = {(xi, yi)} is
the single example controlled by agent i. Each agent selects
an output value ỹi, and the reported (possibly untruthful)
training set S̃ = {(xi, ỹi)}ni=1 is presented to a regression
learning algorithm. The algorithm constructs a hypothesis f̃
and agent i’s cost is the loss

Ri( f̃ ) = Ex∼ρi

[
`( f̃ (x), oi(x))

]
= `( f̃ (xi), yi)

on the point he controls, where ` is a predefined loss func-
tion. Within this setting, we examine the game-theoretic
properties of ERM.

As noted above, an ERM algorithm takes as input a loss
function ` and a training set S , and outputs the hypothe-
sis that minimizes the empirical risk over S according to `.
Throughout this section, we write f̂ = ERM(F , `, S ) as short-
hand for arg min f∈F R̂( f , `, S ). We restrict our discussion
to loss functions of the form `(α, β) = µ(|α − β|), where
µ : R+ → R is a monotonically increasing convex function,
and to the case where F is a convex set of functions. These
assumptions enable us to cast ERM as a convex optimization
problem, which are typically tractable. Most choices of `
and F that do not satisfy the above constraints may not al-
low for computationally efficient learning, and are therefore
less interesting.

We prove two main theorems: if µ is a linear function,
then ERM is group strategyproof; if on the other hand µ

grows faster than any linear function and if F contains more
than one function, then ERM is not incentive compatible.

3.1 ERM with the absolute loss In this section, we focus
on the absolute loss function. Indeed, let ` denote the
absolute loss, `(a, b) = |a − b|, and let F be a convex
hypothesis class. Because ` is only weakly convex, there
may be multiple hypotheses in F that globally minimize the
empirical risk and we must add a tie-breaking step to our
ERM algorithm. Concretely, consider the following two-step
procedure:

1. Empirical risk minimization: calculate

r = min
f∈F

R̂( f , S ).

2. Tie-breaking: return

f̃ = argmin
f∈F : R̂( f ,S )=r

‖ f ‖,

where ‖ f ‖2 =
∫

f 2(x) dx.

Our assumption that F is a convex set implies that the set
of empirical risk minimizers { f ∈ F : R̂( f , S ) = r} is
also convex. The function ‖ f ‖ is a strictly convex function
and therefore the output of the tie-breaking step is uniquely
defined. In our analysis, we only use the fact that ‖ f ‖ is
a strictly convex function of f . Any other strictly convex
function can be used in its place in the tie-breaking step.

The following theorem states that ERM using the ab-
solute loss function has excellent game-theoretic properties.
More precisely, it is group strategyproof : if a member of an
arbitrary coalition of agents strictly gains from a joint devi-
ation by the coalition, then some other member must strictly
lose. Group strategyproofness is usually defined in a way
that includes individual rationality. In our case, the latter
property is satisfied by any mechanism without payments: if
some agent does not provide values for his part of the sam-
ple, then ERM will simply return the best fit for the points of
the other agents, so no agent can gain by not taking part in
the mechanism.

T 3.1. Let N be a set of agents, S = ]i∈NS i a training
set such that S i = {xi, yi} for all i ∈ N, and let ρi be
degenerate at xi. Let ` denote the absolute loss, `(a, b) =

|a − b|, and let F be a convex hypothesis class. Then, ERM
minimizing ` over F with respect to S is group strategyproof.

We prove this theorem below, as a corollary of the
following more explicit result.

P 3.1. Let Ŝ = {(xi, ŷi)}mi=1 and S̃ = {(xi, ỹi)}mi=1
be two training sets on the same set of points, and let f̂ =

ERM(F , `, Ŝ ) and f̃ = ERM(F , `, S̃ ). If f̂ , f̃ then there exists
i ∈ N such that ŷi , ỹi and `( f̂ (xi), ŷi) < `( f̃ (xi), ŷi).



Proof. Let U be the set of indices on which Ŝ and S̃ dis-
agree, i.e., U = {i : ŷi , ỹi}. We prove the claim by prov-
ing its counter-positive, i.e., we assume that `( f̃ (xi), ŷi) ≤
`( f̂ (xi), ŷi) for all i ∈ U, and prove that f̂ ≡ f̃ . We begin by
considering functions of the form fα(x) = α f̃ (x)+(1−α) f̂ (x)
and proving that there exists α ∈ (0, 1] for which

(3.1) R̂( f̂ , S̃ ) − R̂( f̂ , Ŝ ) = R̂( fα, S̃ ) − R̂( fα, Ŝ ) .

For every i ∈ U, our assumption that `( f̃ (xi), ŷi) ≤
`( f̂ (xi), ŷi) implies that one of the following four inequalities
holds:

f̃ (xi) ≤ ŷi < f̂ (xi) f̃ (xi) ≥ ŷi > f̂ (xi)(3.2)
ŷi ≤ f̃ (xi) ≤ f̂ (xi) ŷi ≥ f̃ (xi) ≥ f̂ (xi)(3.3)

Furthermore, we assume without loss of generality that ỹi =

f̃ (xi) for all i ∈ U. Otherwise, we could simply change ỹi

to equal f̃ (xi) for all i ∈ U without changing the output of
the learning algorithm. If one of the two inequalities in (3.2)
holds, we set

αi =
ŷi − f̂ (xi)

f̃ (xi) − f̂ (xi)
,

and note that αi ∈ (0, 1] and fαi (xi) = ŷi. Therefore, for every
α ∈ (0, αi] it holds that either

ỹi ≤ ŷi ≤ fα(xi) < f̂ (xi) or ỹi ≥ ŷi ≥ fα(xi) > f̂ (xi) .

Setting ci = |ŷi − ỹi|, we conclude that for all α in (0, αi],

`( f̂ (xi), ỹi) − `( f̂ (xi), ŷi) = ci and
`( fα(xi), ỹi) − `( fα(xi), ŷi) = ci.

(3.4)

Alternatively, if one of the inequalities in (3.3) holds, we
have that either

ŷi ≤ ỹi ≤ fα(xi) ≤ f̂ (xi) or ŷi ≥ ỹi ≥ fα(xi) ≥ f̂ (xi) .

Setting αi = 1 and ci = −|ỹi − ŷi|, we once again have
that (3.4) holds for all α in (0, αi]. Moreover, if we choose
α = mini∈U αi, (3.4) holds simultaneously for all i ∈ U. (3.4)
also holds trivially for all i < U with ci = 0. (3.1) can now
be obtained by summing both of the equalities in (3.4) over
all i.

Next, we recall that F is a convex set and therefore
fα ∈ F . Since f̂ minimizes the empirical risk with respect
to Ŝ over F , we specifically have that

(3.5) R̂( f̂ , Ŝ ) ≤ R̂( fα, Ŝ ) .

Combining this inequality with (3.1) results in

(3.6) R̂( f̂ , S̃ ) ≤ R̂( fα, S̃ ) .

Since the empirical risk function is convex in its first argu-
ment, we have that

(3.7) R̂( fα, S̃ ) ≤ αR̂( f̃ , S̃ ) + (1 − α)R̂( f̂ , S̃ ) .

Replacing the left-hand side above with its lower bound
in (3.6) yields R̂( f̂ , S̃ ) ≤ R̂( f̃ , S̃ ). On the other hand, we
know that f̃ minimizes the empirical risk with respect to S̃ ,
and specifically R̂( f̃ , S̃ ) ≤ R̂( f̂ , S̃ ). Overall, we have shown
that

(3.8) R̂( f̂ , S̃ ) = R̂( f̃ , S̃ ) = min
f∈F

R̂( f , S̃ ) .

Next, we turn our attention to ‖ f̂ ‖ and ‖ f̃ ‖. We start
by combining (3.8) with (3.7) to get R̂( fα, S̃ ) ≤ R̂( f̂ , S̃ ).
Recalling (3.1), we have that R̂( fα, Ŝ ) ≤ R̂( f̂ , Ŝ ). Once again
using (3.5), we conclude that R̂( fα, Ŝ ) = R̂( f̂ , Ŝ ). Although f̂
and fα both minimize the empirical risk with respect to Ŝ , we
know that f̂ was chosen as the output of the algorithm, and
therefore it must hold that

(3.9) ‖ f̂ ‖ ≤ ‖ fα‖ .

Using convexity of the norm, we have ‖ fα‖ ≤ α‖ f̃ ‖ +

(1 − α)‖ f̂ ‖. Combining this inequality with (3.9), we get
‖ f̂ ‖ ≤ ‖ f̃ ‖. On the other hand, (3.8) tells us that both f̂ and f̃
minimize the empirical risk with respect to S̃ , whereas f̃ is
chosen as the algorithm output, so ‖ f̃ ‖ ≤ ‖ f̂ ‖. Overall, we
have shown that

(3.10) ‖ f̂ ‖ = ‖ f̃ ‖ = min
f∈F : R̂( f ,S̃ )=R̂( f̃ ,S̃ )

‖ f ‖ .

In summary, in (3.8) we showed that both f̂ and f̃ minimize
the empirical risk with respect to S̃ , and therefore both move
on to the tie breaking step of the algorithm. Then, in (3.10)
we showed that both functions attain the minimum norm
over all empirical risk minimizers. Since the norm is strictly
convex, its minimum is unique, and therefore f̂ ≡ f̃ . �

To understand the intuition behind Proposition 3.1, as
well as its relation to Theorem 3.1, assume that Ŝ represents
the true preferences of the agents, and that S̃ represents the
values revealed by the agents and used to train the regression
function. Moreover, assume that Ŝ , S̃ . Proposition 3.1
states that one of two things can happen. Either f̂ ≡ f̃ , i.e.,
revealing the values in S̃ instead of the true values in Ŝ does
not affect the result of the learning process. In this case,
the agents might as well have told the truth. Or f̂ and f̃
are different hypotheses, and Proposition 3.1 tells us that
there must exist an agent i who lied about his true value and
is strictly worse off due to his lie. Clearly, agent i has no
incentive to actually participate in such a lie. This said, we
can now proceed to prove the theorem.

Proof of Theorem 3.1. Let S = {(xi, yi)}mi=1 be a training set
that represents the true private information of a set N of
agents and let S̃ = {(xi, ỹi)}mi=1 be the information revealed
by the agents and used to train the regression function. Let
C ⊆ N be an arbitrary coalition of agents that have conspired



to decrease some of their respective losses by lying about
their values. Now define the hybrid set of values where

for all i ∈ N, ŷi =

{
yi if i ∈ C
ỹi otherwise ,

and let Ŝ = {(xi, ŷi)}mi=1. Finally, let f̂ = ERM(F , `, Ŝ ) and
f̃ = ERM(F , `, S̃ ).

If f̂ ≡ f̃ then the members of C gain nothing from being
untruthful. Otherwise, Proposition 3.1 states that there exists
an agent i ∈ N such that ŷi , ỹi and `( f̂ (xi), ŷi) < `( f̃ (xi), ŷi).
From ŷi , ỹi we conclude that this agent is a member
of C. Therefore, ŷi = yi and `( f̂ (xi), yi) < `( f̃ (xi), yi).
This contradicts our assumption that no member of C loses
from revealing S̃ instead of Ŝ . We emphasize that the
proof holds regardless of the values revealed by the agents
that are not members of C, and we therefore have group
strategyproofness. �

3.2 ERM with Other Convex Loss Functions We have
seen that performing ERM with the absolute loss is incentive
compatible. We now show that the same is not true for most
other convex loss functions. Specifically, we examine loss
functions of the form `(α, β) = µ(|α− β|), where µ : R+ → R
is a monotonically increasing strictly convex function with
unbounded subderivatives. Unbounded subderivatives mean
that µ cannot be bounded from above by any linear function.

For example, µ can be the function µ(α) = αd, where d
is a real number strictly greater than 1. A popular choice is
d = 2, which induces the squared loss, `(α, β) = (α−β)2. The
following example demonstrates that ERM with the squared
loss is not incentive compatible.

E 1. Let ` be the squared loss function, X = R,
and F the class of constant function over X. Further, let
S 1 = {(x1, 2)}, and S 2 = {x2, 0}. On S , ERM outputs
the constant function f̂ (x) ≡ 1, and agent 1 suffers loss 1.
However, if agent 1 reports his value to be 4, ERM outputs
f̂ (x) ≡ 2, with loss of 0 for agent 1.

For every x ∈ X, let F (x) denote the set of feasible
values of x, formally defined as F (x) = { f (x) : f ∈ F }.
Since F is a convex set, it follows that F (x) is either
an interval on the real line, a ray, or the entire real line.
Similarly, for a multiset X = {x1, . . . , xn} ∈ X

n, denote

F (X) = {〈 f (x1), . . . , f (xn)〉 : f ∈ F } ⊆ Rn .

We then say that F is full on a multiset X = {x1, . . . , xn} ∈ X
n

if F (X) = F (x1) × · · · × F (xn). Clearly, requiring that F is
not full on X is a necessary condition for the existence of
a training set with points X where one of the agents gains
by lying. Otherwise, ERM will fit any set of values for the
points with an error of zero. For an example of a function
class that is not full, consider any function class F on X,

|F | ≥ 2, and observe that there have to exist f1, f2 ∈ F and a
point x0 ∈ X such that f1(x0) , f2(x0). In this case, F is not
full on any multiset X that contains two copies of x0.

In addition, if |F | = 1, then any algorithm would
trivially be incentive compatible irrespective of the loss
function. In the following theorem we therefore consider
hypothesis classes F of size at least two which are not full
on the set X of points of the training set. The proof of the
theorem is given in the full version of the paper. As before,
we actually prove a slightly stronger and more explicit claim
about the behavior of ERM.

T 3.2. Let µ : R+ → R be a monotonically increas-
ing strictly convex function with unbounded subderivatives,
and define the loss function `(α, β) = µ(|α − β|). Let F be a
convex hypothesis class that contains at least two functions,
and let X = {x1, . . . , xn} ∈ X

n be a multiset such that F is
not full on X. Then there exist y1, . . . , yn ∈ R such that, if
S = ]i∈NS i with S i = {(xi, yi)}, ρi is degenerate at xi, and
ERM is used, there is an agent who has an incentive to lie.

An example for a function not covered by this theorem
is given by ν(α) = ln(1 + exp(α)), which is both monotonic
and strictly convex, but has a derivative bounded from above
by 1. Our definition uses the subderivatives of µ, rather than
its derivatives, since we do not require µ to be differentiable.

It is natural to ask what happens for loss functions
that are sublinear in the sense that they cannot be bounded
from below by any linear function with strictly positive
derivative. A property of such loss functions, and the reason
why they are rarely used in practice, is that the set of
empirical risk minimizers need no longer be convex. It is
thus unclear how tie-breaking should be defined in order
to find a unique empirical risk minimizer. Furthermore,
the following example provides a negative answer to the
question of general incentive compatibility of ERM with
sublinear loss.

E 2. We demonstrate that ERM is not incentive com-
patible if `(a, b) =

√
|a − b| and F is the class of constant

functions over R. Let S = {(x1, 1), (x2, 2), (x3, 4), (x4, 6)} and
S̃ = {(x1, 1), (x2, 2), (x3, 4), (x4, 4)}. Clearly, the local min-
ima of R̂( f , S ) and R̂( f , S̃ ) have the form f (x) ≡ y where
(xi, y) ∈ S or (xi, y) ∈ S̃ , respectively, for some i ∈ {1, 2, 3, 4}.
The empirical risk minimizer for S is the constant function
f1(x) ≡ 2, while that for S̃ is f2(x) ≡ 4. Thus, agent 4 can
declare his value to be 4 instead of 6 to decrease his loss
from 1/2 to

√
2/4.

4 Uniform Distributions Over the Sample
We now turn to settings where a single agent holds a (possi-
bly) nondegenerate distribution over the input space. How-
ever, we still do not move to the full level of generality.
Rather, we concentrate on a setting where for each agent i,



ρi is the uniform distribution over the sample points xi j,
j = 1, . . . ,m. While this setting is equivalent to curve fit-
ting with multiple agents and may be interesting in its own
right, we primarily engage in this sort of analysis as a step-
ping stone in our quest to understand the learning game. The
results in this section will function as building blocks for the
theorems of Section 5.

Since each agent now holds a uniform distribution over
his sample, we can simply assume that each agent’s cost
is his average empirical loss on the sample, R̂( f̃ , S i) =

1/m
∑m

j=1 `( f̃ (xi j), yi j). The mechanism’s goal is to minimize
R̂( f̃ , S ). We stress at this point that the results in this section
also hold if the agents’ samples differ in size (this is of course
true for the negative results, but also holds for the positive
ones). As we move to this more general setting, truthfulness
of ERM immediately becomes a thorny issue even under
absolute loss. Indeed, the next example indicates that more
sophisticated mechanisms must be used to achieve incentive
compatibility.

E 3. Let F be the class of constant functions over Rk,
N = {1, 2}, and assume the absolute loss function is used.
Let S 1 = {(1, 1), (2, 1), (3, 0)} and S 2 = {(4, 0), (5, 0), (6, 1)}.
The global empirical risk minimizer (according to our tie-
breaking rule) is the constant function f1(x) ≡ 0 with
R̂( f1, S 1) = 2/3. However, if agent 1 declares S̃ 1 =

{(1, 1), (2, 1), (3, 1)}, then the empirical risk minimizer be-
comes f2(x) ≡ 1, which is the optimal fit for agent 1 since
R̂( f2, S 1) = 1/3.

4.1 Mechanisms with Payments One possibility to over-
come the issue that became manifest in Example 3 is to
consider mechanisms that not only return an allocation, but
can also transfer payments to and from the agents based
on the inputs they provide. A famous example for such a
payment rule is the Vickrey-Clarke-Groves (VCG) mecha-
nism [23, 5, 8]. This mechanism starts from an efficient al-
location, and computes each agent’s payment according to
the utility of the other agents, thus aligning the individual
interests of each agent with that of society.

In our setting, where social welfare equals the total
empirical risk, ERM generates a function (or outcome)
which maximizes social welfare and can therefore be directly
augmented with VCG payments. Given an outcome f̂ , each
agent i has to pay an amount of R̂( f̂ , S̃ −i). In turn, the
agent can receive some amount hi(S̃ −i) that does not depend
on the values he has reported, but possibly on the values
reported by the other agents. It is well known [8], and also
easily verified, that this family of mechanisms is incentive
compatible: no agent is motivated to lie regardless of the
other agents’ actions. Furthermore, this result holds for any
loss function, and may thus be an excellent solution for some
settings.

In many other settings, however, especially in the world

of the Internet, transferring payments to and from users
can pose serious problems, up to the extent that it might
become completely infeasible. The practicality of VCG
payments in particular has recently been disputed for various
other reasons [21]. Perhaps most relevant to our work is
the fact that VCG mechanisms are in general susceptible
to manipulation by coalitions of agents and thus not group
strategyproof. It is therefore worthwhile to explore which
results can be obtained when payments are disallowed. This
will be the subject of the following section.

4.2 Mechanisms without Payments In this section, we
restrict ourselves to the absolute loss function. When ERM
is used, and for the special case covered in Section 3, this
function was shown to possess properties far superior to any
other loss function. This fuels hope that similar incentive
compatibility results can be obtained with uniform distribu-
tions over the samples, even when payments are disallowed.
This does not necessarily mean that good mechanisms with-
out payments cannot be designed for other loss functions,
even in the more general setting of this section. We leave the
study of such mechanisms for future work.

ERM is efficient, i.e., it minimizes the overall loss and
maximizes social welfare. In light of Example 3, we shall
now sacrifice efficiency for incentive compatibility. More
precisely, we seek incentive compatible mechanisms which
are approximately efficient in the sense that for all samples S ,
the ratio R̂( f , S )/R̂( f̂ , S ) between the empirical risk of the
solution f returned by the mechanism and that of the optimal
solution f̂ is bounded. We say that a regression learning
mechanism is α-efficient if for all S , R̂( f , S )/R̂( f̂ , S ) ≤ α.
We should stress that the reason we resort to approximation
is not to make the mechanism computationally tractable, but
to achieve incentive compatibility without payments, like we
had in Section 3.

Example 3, despite its simplicity, is surprisingly robust
against many conceivably truthful mechanisms. The reader
may have noticed, however, that the values of the agents in
this example are not “individually realizable”: in particular,
there is no constant function which realizes agent 1’s values,
i.e., fits them with a loss of zero. In fact, agent 1 benefits
from revealing values which are consistent with his individ-
ual empirical risk minimizer. This insight leads us to design
the following simple but useful mechanism, which we will
term “project-and-fit”:

Input: A hypothesis class F and a sample S = ]S i,
S i ⊆ X × R
Output: A function f ∈ F .
Mechanism:

1. For each i ∈ N, let fi = ERM(F , S i).

2. Define S̃ i = {(xi1, fi(xi1)), . . . , (xim, fi(xim))}.

3. Return f = ERM(S̃ ), where S̃ = ]n
i=1S̃ i.



In other words, the mechanism calculates the individual em-
pirical risk minimizer for each agent and uses it to relabel the
agent’s sample. Then, the relabeled samples are combined,
and ERM is performed. It should be noted that this mecha-
nism achieves group strategyproofness at least with respect
to Example 3.

More generally, it can be shown that the mechanism is
group strategyproof whenF is the class of constant functions
over Rk. Indeed, it is natural to view our setting through the
eyes of social choice theory [14]: agents entertain (weak)
preferences over a set of alternatives, i.e., the functions in F .
In the case of constant functions, agents’ preferences are
what is known as single-plateau [15]: each agent has an
interval of ideal points minimizing his individual empirical
risk, and moving away from this plateau in either direction
strictly decreases the agent’s utility. More formally, let
a1, a2 be constants such that the constant function f (x) ≡ a
minimizes an agent’s empirical risk if and only if a ∈ [a1, a2].
If a3, a4 satisfy a3 < a4 ≤ a1 or a3 > a4 ≥ a2, then the
agent strictly prefers the constant function a4 to the constant
function a3. As such, single-plateau preferences generalize
the class of single-peaked preferences. For dealing with
single-plateau preferences, Moulin [15] defines the class of
generalized Condorcet winner choice functions, and shows
that these are group strategyproof.

When F is the class of constant functions and ` is the
absolute loss, the constant function equal to a median value
in a sample S minimizes the empirical risk with respect
to S . This is because there must be at least as many values
below the median value as are above, and thus moving the fit
upward (or downward) must monotonically increase the sum
of distances to the values. Via tie-breaking, project-and-fit
essentially turns the single-plateau preferences into single-
peaked ones, and then chooses the median peak. Once again,
group strategyproofness follows from the fact that an agent
can only change the mechanism’s output by increasing its
distance from his own empirical risk minimizer.

Quite surprisingly, project-and-fit is not only truthful
but also provides a constant approximation ratio when F is
the class of constant functions or the class of homogeneous
linear functions overR, i.e., functions of the form f (x) = a·x.
The class of homogeneous linear functions, in particular, is
important in machine learning, for instance in the context of
Support Vector Machines [22]. The proof of the following
theorem is given in the full version of the paper.

T 4.1. Assume that F is the class of constant func-
tions over Rk, k ∈ N or the class of homogeneous linear
functions over R. Then project-and-fit is group strategyproof
and 3-efficient.

A simple example shows that the 3-efficiency analysis
given in the proof is tight. We generalize this observation by
proving that, for the class of constant or homogeneous linear

functions and irrespective of the dimension of X, no truthful
mechanism without payments can achieve an efficiency ratio
better than 3. It should be noted that this lower bound holds
for any choice of points xi j. The proof is again deferred to
the full version of the paper.

T 4.2. Let F be the class of constant functions
over Rk or the class of homogeneous linear functions
over Rk, k ∈ N. Then there exists no incentive compatible
mechanism without payments that is (3 − ε)-efficient for any
ε > 0, even when |N | = 2.

Let us recapitulate. We have found a group strate-
gyproof and 3-efficient mechanism for the class of constant
functions over Rk and for the class of homogeneous lin-
ear functions over R. A matching lower bound, which also
applies to multi-dimensional homogeneous linear functions,
shows that this result cannot be improved upon for these
classes. It is natural to ask at this point if project-and-fit
remains incentive compatible when considering more com-
plex hypothesis classes, such as homogeneous linear func-
tions over Rk, k ≥ 2, or linear functions. An example serves
to answer this question in the negative.

Is there some other mechanism which deals with more
complex hypothesis classes and provides a truthful approxi-
mation? We believe that this is not the case even for the class
of homogeneous linear functions over Rk for any k ≥ 2. The
following conjecture formalizes this statement. Arguments
supporting the conjecture can be found in the full version of
the paper.

C 4.1. Let F be the class of homogeneous linear
functions over Rk, k ≥ 2, and assume that m = |S i| ≥ 3.
Then any incentive compatible and surjective mechanism is
a dictatorship.

Conceivably, dictatorship would be an acceptable solution if
it could guarantee approximate efficiency. A simple example
shows that unfortunately this is not the case.

5 Arbitrary Distributions Over the Sample
In Section 4 we established several positive results in the
setting where each agent cares about a uniform distribution
on his portion of a global training set. In this section we
extend these results to the general regression learning setting
defined in Section 2. More formally, the extent to which
agent i ∈ N cares about each point in X will now be
defined by the distribution function ρi, and agent i controls
the labels of a finite set of points sampled according to ρi.
Our strategy in this section will consist of two steps. First,
we want to show that under standard assumptions on the
hypothesis class F and the number m of samples, each
agent’s empirical risk on the training set S i estimates his real
risk according to ρi. Second, we intend to establish that,



as a consequence, our incentive compatibility results are not
significantly weakened when moving to the general setting.

Abstractly, let D be a probability distribution and let G
be a class of real-valued functions, bounded in [0,C]. We
would like to prove that for any ε > 0 and δ > 0 there exists
m ∈ N such that, if X1, . . . , Xm are sampled i.i.d. according
toD,

(5.11)

Pr

for all g ∈ G,
∣∣∣∣∣EX∼D[g(X)] −

1
m

m∑
i=1

g(Xi)
∣∣∣∣∣ ≤ ε

 ≥ 1 − δ.

To establish this bound, we use standard uniform con-
vergence arguments. A specific technique is to show that the
hypothesis class G has bounded complexity. The complexity
of G can be measured in various different ways, for example
using the pseudo-dimension [18, 9], an extension of the well-
known VC-dimension to real-valued hypothesis classes, or
the Rademacher complexity [3]. If the pseudo-dimension
of G is bounded by a constant, or if the Rademacher com-
plexity of G with respect to an m-point sample is O(

√
m),

then there indeed exists m such that (5.11) holds.
More formally, assume that the hypothesis class F has

bounded complexity, choose ε > 0, δ > 0, and consider a
sample S i of size m = Θ(log(1/δ)/ε2) drawn i.i.d. from the
distribution ρi of any agent i ∈ N. Then we have that
(5.12)

Pr
(
for all f ∈ F ,

∣∣∣Ri( f ) − R̂( f , S i)
∣∣∣ ≤ ε

)
≥ 1 − δ .

In particular, we want the events in (5.12) to hold simultane-
ously for all i ∈ N, i.e.,

(5.13) for all f ∈ F ,
∣∣∣RN( f ) − R̂( f , S )

∣∣∣ ≤ ε .

Using the union bound, this holds with probability at least
1 − nδ.

We now turn to incentive compatibility. The following
theorem implies that mechanisms which do well in the
setting of Section 4 are also good, but slightly less so, when
arbitrary distributions are allowed. Specifically, given a
training set satisfying (5.12) for all agents, a mechanism that
is incentive compatible in the setting of Section 4 becomes ε-
incentive compatible, i.e., no agent can gain more than ε by
lying, no matter what the other agents do. Analogously, a
group strategyproof mechanism for the setting of Section 4
becomes ε-group strategyproof, i.e., there exists an agent in
the coalition that gains less than ε. Furthermore, efficiency is
preserved up to an additive factor of ε. We wish to point out
that ε-equilibrium is a well-established solution concept; the
underlying assumption is that agents would not bother to lie
if they were to gain an amount as small as ε. This concept is
particularly appealing when one recalls that ε can be chosen
to be arbitrarily small. The proof of the following theorem
can be found in the full version of the paper.

T 5.1. Let F be a hypothesis class, ` some loss
function, and S = ]S i a training set such that for all f ∈ F
and i ∈ N, |Ri( f ) − R̂( f , S i)| ≤ ε/2, and |RN( f ) − R̂( f , S )| ≤
ε/2. Let M be a mechanism with or without payments.

1. If M is incentive compatible (group strategyproof, re-
spectively) under the assumption that each agent’s cost
is R̂( f̃ , S i), then M is ε-incentive compatible (ε-group
strategyproof) in the general regression setting.

2. If M is α-efficient under the assumption that the mech-
anism’s goal is to minimize R̂( f̃ , S ), M(S ) = f̃ , then
RN( f̃ ) ≤ α · argmin f∈F RN( f ) + ε.

As discussed above, the conditions of Theorem 5.1 are satis-
fied with probability 1 − δ when F has bounded dimension
and m = Θ(log(1/δ)/ε2). As the latter expression depends
logarithmically on 1/δ, the sample size only needs to be in-
creased by an additive factor of Θ(log(n)/ε2) to achieve the
stronger requirement of (5.13).

Let us examine how Theorem 5.1 applies to our posi-
tive results. Since ERM with VCG payments is incentive
compatible and efficient under uniform distributions over the
samples, we obtain ε-incentive compatibility and efficiency
up to an additive factor of ε when it is used in the general
learning game, i.e., with arbitrary distributions. This holds
for any loss function `. The project-and-fit mechanism is ε-
group strategyproof in the learning game when F is the class
of constant functions or of homogeneous linear functions
over R, and is 3-efficient up to an additive factor of ε. This is
true only for the absolute loss function.

6 Discussion
In this paper, we have studied mechanisms for a general
regression learning framework involving multiple strategic
agents. In the case where each agent controls one point,
we have obtained a strong and surprising characterization of
the truthfulness of ERM. When the absolute loss function
is used, ERM is group strategyproof. On the other hand,
ERM is not even individually incentive compatible for any
loss function that is superlinear in a certain well-defined
way. This particularly holds for the popular squared loss
function. In the general learning setting, we have established
the following result: For any ε, δ > 0, given a large
enough training set, and with probability 1 − δ, ERM with
VCG payments is efficient up to an additive factor of ε,
and ε-incentive compatible. We have also obtained limited
positive results for the case when payments are disallowed,
namely an algorithm that is ε-group strategyproof and 3-
efficient up to an additive factor of ε for constant functions
over Rk, k ∈ N, and for homogeneous linear functions
over R. We also gave a matching lower bound, which also
applies to multidimensional homogeneous linear functions.
The number of samples required by the aforementioned



algorithms depends on the combinatorial richness of the
hypothesis space F , but differs only by an additive factor of
Θ(log(n)/ε2) from that in the traditional regression learning
setting without strategic agents. Since F can be assumed to
be learnable in general, this factor is not very significant.

Since at the moment there is virtually no other work on
incentives in machine learning, many exciting directions for
future work exist. While regression learning constitutes an
important area of machine learning with numerous appli-
cations, adapting our framework for studying incentives in
classification or in unsupervised settings will certainly prove
interesting as well. In classification, each point of the in-
put space is assigned one of two labels, either +1 or −1.
ERM is trivially incentive compatible in classification when
each agent controls only a single point. The situation again
becomes complicated when agents control multiple points.
In addition, we have not considered settings where ERM is
computationally intractable. Just like in general algorithmic
mechanism design, VCG is bound to fail in this case. It is
an open question whether one can simultaneously achieve
tractability, approximate efficiency, and (approximate) in-
centive compatibility. Several interesting questions follow
directly from our work. The one we are most interested in is
settling Conjecture 4.1: are there incentive compatible and
approximately efficient mechanisms without payments for
homogeneous linear functions? Do such mechanisms exist
for other interesting hypothesis classes? These questions are
closely related to general questions about the existence of in-
centive compatible and non-dictatorial mechanisms, and are
interesting well beyond the scope of machine learning and
computer science.
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